Разное

Восьмеричная система счисления в информатике: Восьмеричная система счисления – как переводить, таблица

Содержание

Восьмеричная система счисления

При описании двоичной системы счисления было упомянуто, почему современное "железо" понимает только двоичную систему. Однако человеку трудно воспринимать длинные записи нулей и единиц, а переводить числа из двоичной в десятичную систему и обратно трудоемко.

Поэтому в программировании иногда используют другие системы счисления – восьмеричную и шестнадцатеричную. Поскольку 8 и 16 являются степенями двойки,

8 = 23, 16 = 24

преобразование двоичного числа в эти системы, также как обратная операция, выполняются просто.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствует число из трех цифр в двоичной системе счисления:

000 – 0
001 – 1
010 – 2
011 – 3
100 – 4
101 – 5
110 – 6
111 – 7

Для преобразования двоичного числа в восьмеричное надо разбить его на тройки цифр и заменить каждую тройку соответствующей ей одной цифрой из восьмеричной системы счисления. Разбивать двоичное число на тройки следует с конца, а вместо недостающих цифр в начале можно записать нули.

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

В примере число 1011101 в двоичной системе приводится к числу 135 в восьмеричной системе счисления.

10111012 = 1358

Обратный перевод, когда восьмеричное число переводится в двоичное, выполняется аналогично. Только здесь на место восьмеричных цифр подставляются двоичные числа, состоящие из трех цифр.

135 = 001 011 101

Как перевести восьмеричное число в десятичное? Здесь действует тот же алгоритм, как при преобразовании двоичного числа в десятичное. Вспомним его:

11012 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = 8 + 4 + 0 + 1 = 1310

Однако в случае восьмеричного числа за основание степени берется десятичное число 8:

1358 = 1 * 82 + 3 * 81 + 5 * 80 = 64 + 24 + 5 = 9310

Преобразование десятичного числа в восьмеричное также похоже на перевод в двоичное, за исключением того, что делить надо на 8:

93 / 8 = 11, остаток 5
11 / 8 =  1, остаток 3
 1 / 8 =  0, остаток 1

Собираем остатки с конца и получаем число 135 в восьмеричной системе счисления.

1.3. СИСТЕМЫ СЧИСЛЕНИЯ. - Основы информатики

1.3.1.ПОНЯТИЕ СИСТЕМЫ СЧИСЛЕНИЯ.

Все фантастические возможности вычислительной техники (ВТ) реализуются путем создания разнообразных комбинаций сигналов высокого и низкого уровней, которые условились называть «единицами» и «нулями».

Система счисления(СС) - это система записи чисел с помощью определенного набора цифр.CС называется позиционной, если одна и та же цифра имеет различное значение, которое определяется ее местом в числе. Десятичная СС является позиционной: 999.Римская СС является непозиционной. Значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.Количество различных цифр, употребляемых в позиционной СС, называется основанием СС.

Развернутая форма числа - это запись, которая представляют собой сумму произведений цифр числа на значение позиций.

Например: 8527=8*103+5*102+2*101+7*100

Развернутая форма записи чисел произвольной системы счисления имеет вид

, где

X - число;
a - основа системыисчисления;
i - индекс;
m - количество разрядов числа дробной части;
n - количество разрядов числа целой части.

Например: 327.46 n=3, m=2, q=10

Если основание используемой СС больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение.

Например: если 10=А, а 11=В, то число 7А.5В12 можно расписать так:

7А.5В12 = В·12-2 + 5 ·2-1 +А ·120 + 7 ·121.

В шестнадцатеричной СС основа - это цифры 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 с соответствующими обозначениями 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Примеры чисел: 17D.ECH, F12AH.

ДвоичнаяСС- это система, в которой для записи чисел используются две цифры 0 и 1. Основанием двоичной системы счисления является число 2.

Двоичный код числа - запись этого числа в двоичной системе счисления. Например,

0=02
1=12
2=102
3=112
7=1112
120=11110002.

В ВТ применяют позиционные СС с недесятичным основанием: двоичную, восьмеричную, шестнадцатеричную. Для обозначения используемой СС число снабжают верхним или нижним индексом, в котором записывают основание СС. Другой способ – использование латинских букв после записи числа:

D – десятичная СС
В – двоичная СС
О – восьмеричная СС
Н – 16-ричная СС.

Несмотря на то, что 10-тичная СС имеет широкое распространение, цифровые ЭВМ строятся на двоичных элементах, т.к. реализовать элементы с 10 четко различимыми состояниями сложно. Историческое развитие ВТ сложилось таким образом, что ЭВМ строятся на базе двоичных цифровых устройств: триггеров, регистров, счетчиков, логических элементов и т.д.

16-ричная и 8-ричная СС используются при составлении программ на языке машинных кодов для более короткой и удобной записи двоичных кодов – команд, данных, адресов и операндов.

Задача перевода из одной СС в другую часто встречается при программировании, особенно, на языке Ассемблера. Например, при определении адреса ячейки памяти. Отдельные стандартные процедуры языков программирования Паскаль, Бейсик, Си, HTML требуют задания параметров в 16-ричной СС. Для непосредственного редактирования данных, записанных на жесткий диск, также необходимо умение работать с 16-ричными числами. Отыскать неисправность в ЭВМ невозможно без представлений о двоичной СС.

В таблице приведены некоторые числа, представленные в различных СС.

Двоичные
числа

Восьмеричные
числа

Десятичные
числа

Шестнадцатеричные
числа

0

0

0

0

1

1

1

1

10

2

2

2

11

3

3

3

100

4

4

4

101

5

5

5

110

6

6

6

111

7

7

7

1000

10

8

8

1001

11

9

9

1010

12

10

A

1011

13

11

B

1100

14

12

C

1101

15

13

D

1110

16

14

E

1111

17

15

F

1.3.2. ПЕРЕВОД ЧИСЕЛ ИЗ ПРОИЗВОЛЬНОЙ СС В ДЕСЯТИЧНУЮ И ОБРАТНО.

Перевод чисел из произвольной системы в десятичную. Для перевода числа из любой позиционной СС в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

11012=1*23+1*22+0*21+1*20=1310

17D.ECH=12·16-2 + 14·16-1 +13·160 + 7·161 + 1·162=381.921875

Перевод чисел из десятичной СС в заданную.

1) Для преобразования целых чисел десятичной системы счисления в число любой системы счисления последовательно выполняют деление нацело на основание СС, пока не получат нуль. Числа, которые возникают как остаток от деления на основание СС, представляют собой последовательную запись разрядов числа в выбранной СС от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1*28+1*27+1*26+0*25+1*24+1*23+0*2 2+1*21+1*20=1+2+8+16+64+128+256=47510.

2) Для преобразования десятичных дробей десятичной СС в число любой СС последовательно выполняют умножение на основание системы счисления , пока дробная часть произведения не станет равной нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например: перевести число 0.375 10 в двоичную СС.

Полученный результат - 0.0112.

Необходимо отметить, что не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части, округляя последний разряд.

1.3.3. ПЕРЕВОД МЕЖДУ ОСНОВАНИЯМИ, СОСТАВЛЯЮЩИМИ СТЕПЕНЬ 2.

Для того, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например:

1234.7778 = 001 010 011 100.111 111 1112 = 1 010 011 100.111 111 1112

12345678 = 001 010 011 100 101 110 1112 = 1 010 011 100 101 110 1112

Обратный перевод: каждая триада двоичных цифр заменяется восьмеричной цифрой, при этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например:

11001112 = 001 100 1112 = 1478

11.10012 = 011.100 1002 = 3.448

110.01112 = 110.011 1002 = 6.348

При переводах между двоичной и шестнадцатеричной СС используются четверки цифр. При необходимости выравнивание выполняется до длины двоичного числа, кратной четырем.

Например:

1234.AB7716 = 0001 0010 0011 0100.1010 1011 0111 01112 =1 0010 0011 0100.1010 1011 0111 01112

CE456716 = 1100 1110 0100 0101 0110 01112

0.1234AA16 = 0.0001 0010 0011 0100 1010 10102

11001112 = 0110 01112 = 6716

11.10012 = 0011.10012 = 3.916

110.01110012 = 0110.0111 00102 = 65.7216

При переходе из восьмеричного счисления в шестнадцатеричное счисление и обратно используется вспомогательный двоичный код числа.

Например:

12345678 = 001 010 011 100 101 110 1112 = 0101 0011 1001 0111 01112 = 5397716

0.120348 = 0.001 010 000 011 1002 = 0.0010 1000 0011 10002 = 0.283816

120.348 = 001 010 000. 011 1002 = 0101 0000.0111 00002 = 50.716

1234.AB7716 = 0001 0010 0011 0100.1010 1011 0111 01112 =

= 001 001 000 110 100.101 010 110 111 011 1002 = 11064.5267348

CE456716 = 1100 1110 0100 0101 0110 01112 = 110 011 100 100 010 101 100 1112 = 634425478

0.1234AA16 =0.0001 0010 0011 0100 1010 10102 =0.000 100 100 011 010 010 101 0102 =0.044322528

Восьмеричная система счисления

Тип урока: урок введения нового материала в 8 классе.

Дидактическая цель урока: ознакомление учащихся с восьмеричной системой счисления, с переводом чисел из восьмеричной в десятичную систему счисления, и обратно, а так же с переводом из восьмеричной системы счисления в двоичную систему счисления и обратно. Отработка навыков перевода из одной системы счисления в другую.

Развивающая цель урока: развитие умения рассуждать, сравнивать, делать выводы. Развитие памяти, внимательности, познавательного интереса к предмету с использованием соответствующих заданий.

Воспитательная: формирование самоконтроля у школьников. 

Этапы урока:

  1. Организация начала урока – 2 мин.
  2. Проверка домашнего задания – 10 мин.
  3. Подготовка учащихся к усвоению новых знаний – 5 мин.
  4. Введение нового материала – 8 мин.
  5. Первичное закрепление нового материала – 5 мин.
  6. Контроль и самопроверка знаний – 10 мин.
  7. Информация о домашнем задании – 3 мин.
  8. Подведение итогов урока – 2 мин.

Структура урока:

  • Проверка домашнего задания.
  • Знакомство с записями восьмеричных чисел.
  • Перевод целого числа из восьмеричной системы счисления в десятичную с проверкой.
  • Перевод числа из восьмеричной системы счисления в двоичную и обратно.
  • Информация о домашнем задании.
  • Подведение итогов урока.

Средства обучения:

  1. Приложение операционной системы Windows XP-Калькулятор.
  2. Индивидуальная карточка учащегося.
  3. Алгоритм работы в приложении о.с. Windows XP-Калькулятор.
  4. Презентация.
  5. Карточка с заданием для перевода чисел из восьмеричной системы счисления в десятичную систему счисления.
  6. Карточка с заданиями для перевода из одной системы счисления в другую с помощью двоично-восьмеричной таблицы.
  7. Карточка с творческим заданием.

Ход урока

1 этап. Организация начала урока.

Цель этапа: подготовка учащихся к работе на занятиях.

Здравствуйте, ребята!

Сегодня на уроке мы с вами познакомимся с восьмеричной системой счисления и отработаем навыки перевода из одной системы счисления в другую.

Получают индивидуальные карточки, которые подписывают и куда будут вносить ответы заданий.

Ф.И.
№1 №2 №3 
     

Приложение 1

2 этап. Проверка выполнения домашнего задания.

Цель этапа: установление правильности и осознанности выполнения домашнего задания всеми учащимися, выявление пробелов и их коррекция.

Проверим выполнение домашнего задания с помощью стандартного приложения ОС Windows XP-Калькулятор.

Домашнее задание: переведите числа из двоичной системы счисления в десятичную и сделайте проверку.

Получают листы с алгоритмом работы в приложении Калькулятор, проверяют домашнее задание за ПК.

Приложение 2

Ответы проверим с помощью презентации к уроку.

  1. 102=210
  2. 112=310
  3. 1002=410
  4. 1012=510
  5. 1102=610
  6. 1112=710

3 этап. Введение нового материала.

Цель этапа: обеспечение восприятия, осмысления и первичного запоминания знаний и способов действий, связей и отношений в объекте изучения.

Запишите тему сегодняшнего урока: «Восьмеричная система счисления».

Основание: 8

Алфавит цифр: 0, 1, 2, 3, 4, 5, 6, 7

Рассмотрим перевод целого числа из восьмеричной системы счисления в десятичную и выполним проверку.

Алгоритм перевода целого числа из восьмеричной системы счисления в десятичную.

Записать восьмеричное число в развернутой форме и вычислить ее значение.

Пример 1.

10
218=2*81+1*80=16+1=1710

Выполним проверку.

Алгоритм перевода целого числа из десятичной системы счисления в восьмеричную.

  1. Последовательно выполнять деление исходного целого десятичного числа на 8 до получения результата строго меньше основания системы.
  2. Полученные остатки записать в обратной последовательности.

1710→А8

1710=218

Пример 2.

10
718=7*81+1*80=56+1=5710

4 этап. Первичное закрепление нового материала.

Цель этапа: установление правильности и осознанности усвоения нового учебного материала.

Задание №1 на первичное закрепление нового материала. Приложение 3

Перевести число из восьмеричной системы счисления в десятичную и выполнить проверку.

210
1148 =1*82+1*81+4*80=64+8+4=7610

Проверка:

7610=1148

Выбрать правильный ответ под соответствующей буквой и записать букву в индивидуальную карточку.

О) 8410
У) 7610
Е) 9710

5 этап. Контроль и самопроверка знаний.

Цель этапа: выявление качества и уровня овладения знаниями и способами действий.

Мы научились переводить числа из одной системы в другую, а теперь рассмотрим способы переводов, которые не требуют от нас каких-либо вычислений. Для этого в тетради начертим таблицу, состоящую из двух столбцов. Число в 8-ой системе счисления соответствует тройке цифр двоичной системы счисления. Например, 08=0002, 18=0012, далее обратимся к проверяемому в начале урока домашнему заданию. Таблица легко заполняется.

Двоично-восьмеричная система счисления.

8 2
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

При переводе восьмеричного числа в двоичное заменяют каждую восьмеричную цифру на соответствующую тройку цифр из таблицы. Для обратной операции, то есть для перевода из двоичной в восьмеричную систему, двоичное число разбивают на тройки цифр, потом заменяют каждую группу одной восьмеричной цифрой.

Например:

7148=111 001 1002
101 110 1002=5648.

Учащимся раздаются карточки с заданиями. После их решения, правильные ответы помещаются в индивидуальную карточку ученика.

Задания №2, №3 на контроль и самопроверку знаний. Приложение 4

Переведите числа из одной системы счисления в другую (с помощью двоично-восьмеричной таблицы).

2. Переведите число из восьмеричной системы счисления в двоичную систему счисления.

53282

ц) 11010012; р)101 011 0102; в) 1110011002;

3. Переведите из двоичной системы счисления в восьмеричную систему счисления.

111 11128

а) 778; о) 648; в) 298;

Сдайте индивидуальные карточки и раздаточный материал. Проверим ответы с помощью слайда № 7 презентации к уроку.

Правильные ответы:

№2 р)101 011 0102

№3 а) 778

Индивидуальная карточка примет вид:

Ф.И.
№1 №2 №3
У Р А

Ученики получают раздаточный материал с творческим заданием. Даны координаты точек в разных системах счисления. Необходимо выполнить перевод координат в десятичную систему счисления, отметить и соединить точки на координатной плоскости.

Творческое задание. Приложение 5

Даны координаты точек:

1(1002,12)
2(1002, 1102)
3(1002, 10002)
4(108,108)
5(68,78)
6(108,68)

Выполните перевод чисел в десятичную систему счисления и в координатной плоскости поставьте и соедините все точки.

Ответ (в десятичной системе счисления):

1 2 3 4 5 6
(4,1) (4,6) (4,8) (8,8) (6,7) (8,6)


Рисунок 1

6 этап. Информация о домашнем задании.

Цель этапа: обеспечение понимания цели, содержания и способов выполнения домашнего задания.

Переведите числа из восьмеричной системы счисления в двоичную, затем в десятичную систему счисления.

358 →А2→А10

658 → А2→А10

2158 → А2→А10

7 этап. Подведение итогов урока.

Цель этапа: дать анализ и оценку успешности достижения цели.

Если у вас в индивидуальной карте получилось слово: УРА, то вы получили «5».

Если справились с 2-мя заданиями, то оценка «4».

Если решили 1-о задание, то вы получили «3».

Сегодня на уроке мы познакомились с восьмеричной системой счисления, рассмотрели разные способы перевода чисел из одной системы счисления в другую. Одни из способов требовали от нас решать задачи математическими методами, другие с привлечением компьютера, третьи не требовали от нас каких-либо вычислений.

Спасибо за урок.

Двоичная, восьмеричная и шестнадцатеричная системы счисления

Замечание 1

Данные системы счисления относятся к позиционным.

Двоичная система счисления

Эта система счисления свое название получила в результате того, что содержит в своем основании всего две цифры – $0$ и $1$. Таким образом, число $2$ и его степени $2, 4, 8$ и т.д. играют особую роль. Самая правая цифра числа показывает число единиц, следующая – число двоек, следующая - число четверок и т.д.

В двоичной системе счисления для формирования числа используются всего две цифры: $0$ и $1$. Пределом разряда является $1$, и как только при счете разряд достигает своего максимального значения, он обнуляется, а при этом образуется новый разряд. Ниже в таблице приведены соответствия двоичных и десятичных чисел.

Рисунок 1.

Замечание 2

Используя двоичную систему счисления, можно закодировать любое натуральное число, представляя его как последовательность нулей и единиц. В двоичном виде можно представить не только числа, но и любую другую информацию: тексты, изображения, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что оно легко реализуется технически.

Именно на принципе двоичного кодирования работает вся вычислительная техника: $1$ означает, что электрический сигнал прошел, а $0$ – сигнал отсутствует. Наглядно это можно рассмотреть на примере перфокарт, которые использовались в вычислительных машинах первых поколений. Как уже упоминалось выше: в перфокартах пробивались отверстия в соответствующих рядах и столбцах цифр, таким образом, кодировались и сохранялись программы, поскольку жестких дисков, и тем более оптических, в те времена не было. Затем программы считывались при помощи электрического сигнала, который, если проходил в отверстие, значит, это был код $1$ и, наоборот, если не проходил сигнал – это был код $0$. Аналогичным способом в настоящее время записываются оптические диски при помощи лазерного луча, прожигающего невидимые микроотверстия на поверхности специальных дисков. Принцип считывания закодированной информации с диска аналогичен предыдущему.

Из всего вышесказанного можно сделать вывод, что компьютер «понимает» всего два числа: $0$ и $1$. И именно один двоичный разряд и является минимальной единицей измерения памяти компьютера, которая называется «бит», т.е. бит – это ячейка памяти компьютера, в которую можно записать $1$ или $0$.

Другой единицей измерения информации является байт.

Байт – это восемь подряд расположенных битов. Общее количество комбинаций двоичных значений в байте равно $28 = 256$.

$1 \ байт = 8 \ битам$; $1 \ Кб = 210 \ байта = 1024 \ байта$; $1 \ Мб = 210 \ Кбайт = 1024 \ Кбайта$; $1 \ Гб = 210 \ байта = 1024 \ килобайта$; $1 \ Тб = 210 \ гигабайта = 1024 \ гигабайта$.

Замечание 3

Достоинства двоичной системы счисления заключаются в ее простоте, благодаря которой она широко используется в технике. Устройства, работающие в двух состояниях (включено, выключено), наиболее помехоустойчивы, и, как следствие, более надежны.

Восьмеричная система счисления

В основе данной системы счисления находятся $8$ цифр: от $0$ до $7$. Цифра $1$, указанная в самом младшем разряде, означает, как и в десятичном числе просто $1$. Та же цифра $1$ в следующем разряде означает $8$, в следующем $64$ и т.д. Число $100$ (восьмеричное) – это число $64$ (десятичное). Чтобы перевести в двоичную систему, например, число $611$ (восьмеричное), необходимо каждую цифру числа заменить эквивалентной тройкой двоичных чисел. Для перевода многозначного двоичного числа в восьмеричную систему счисления необходимо разбить его на тройки по правую сторону и по левую и заменить каждую тройку соответствующей восьмеричной цифрой.

В таблице приведены соответствия чисел в восьмеричной и десятичной системах.

Рисунок 2.

В технике данная система находит широкое применение, так с помощью нее можно компактно записывать двоичные числа.

Шестнадцатеричная система счисления

Запись числа в восьмеричной системе счисления достаточно компактная, но еще компактнее она выглядит в шестнадцатеричной системе. В основу данной системы входят цифры от $0$ до $9$ и первые буквы латинского алфавита: $A$, $B$, $C$, $D$, $E$, $F$.

Цифра $1$, записанная в самом младшем разряде, означает просо единицу. Цифра $1$ в следующем разряде – $16$ (десятичное число), в следующем – $256$ и т.д. Цифра, обозначенная латинской буквой $F$, расположенная в самом младшем разряде означает $15$ ( десятичное число).

В таблице приведены соответствия чисел в шестнадцатеричной и десятичной системах.

Рисунок 3.

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является $8$-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы $IBM/360$, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с $8$-битными символами, как, например, $PDP-11$ или $БЭСМ-6$) использовали восьмеричную систему.

Простая информатика - Система счисления

Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй – I, V, X, L, C, D, M и это непозиционная система счисления.

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например:

11 – здесь первая единица обозначает десять, а вторая – 1.
 II – здесь обе единицы обозначают единицу.

345, 259, 521 – здесь цифра 5 в первом случае обозначает 5, во втором – 50, а в третьем – 500.

XXV, XVI, VII – здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.

Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел). 

В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.

Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.

Основание системы счисления – это количество знаков, которое используется для записи цифр.

Разряд - это позиция цифры в числе. Разрядность числа - количество цифр, из которых состоит число (например, 264 - трехразрядное число, 00010101 - восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка - третий).

Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)

Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни. 

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
 0 – это ноль
 1 – это один (и это предел разряда)
 10 – это два
 11 – это три (и это снова предел)
 100 – это четыре
 101 – пять
 110 – шесть
 111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные. 

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710
Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
 38 / 2 = 19 (0 остаток)
 19 / 2 = 9 (1 остаток)
 9 / 2 = 4 (1 остаток)
 4 / 2 = 2 (0 остаток)
 2 / 2 = 1 (0 остаток)
 1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Восьмеричная система счисления

Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:

000 – 0
 001 – 1
 010 – 2
 011 – 3
 100 – 4
 101 – 5
 110 – 6
 111 – 7

Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 10111012 = 1358.

Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе – это не 100 в десятичной) в двоичную систему счисления.

1008 = 1 0 0 = 001 000 000 = 001000000 = 10000002 

Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:

6728 = 6 * 82 + 7 * 81 + 2 * 80 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
 1008 = 1 * 82 + 0 * 81 + 0 * 80 = 6410

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15). 

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:


Например:
 10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи - это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255 

255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние

таблица и алфавит, история, применение в информатике

Восьмеричная система счисления — позиционная целочисленная система счисления с основанием 8. Является одной из самых популярных в информатике, наряду с двоичной, десятичной и шестнадцатеричной.

Немного истории

Возникновение восьмеричной системы счисления связывают с техникой счета на пальцах. Однако, если классический счет на пальцах, подразумевает задействование всех десяти, то эта техника использует не пальцы, а промежутки между ними, которых — 8.

Основание и алфавит

Восьмеричная система является традиционной системой счисления с основанием 8. Алфавит состоит их цифр от 0 до 7.

Развернутая форма записи числа будет выглядеть следующим образом:

an-1an-2…a1a0 = an-1 ∙ 8n-1 + an-2 ∙ 8n-2 + ∙∙∙ + a0 ∙ 80

Например:

3678=3 ∙ 82 + 6 ∙ 81 + 7 ∙ 80 = 3 ∙ 64 + 6 ∙ 8 + 7 ∙ 1 = 192 + 48 + 7 = 24710

Применение восьмеричной системы счисления

Многие знают, что компьютеры используют двоичную систему счисления. Однако простому человеку использовать её не удобно, из-за больших вычислений и переводов. В этом случае, гораздо удобнее воспользоваться более емкими системами, такими как восьмеричная или шестнадцатеричная. Восьмеричная очень схожа с десятичной, за исключение двух цифр в алфавите (8,9). Благодаря этому – легка в восприятии. С её помощью можно легко переводить числа с одной системы счисления в другую и совершать арифметические действия.

Практическое применение восьмеричная система находила в программировании, однако с развитием компьютерных технологий, практически полностью уступила — шестнадцатеричной. На сегодняшний день, частичное использование можно встретить в Linux-системах.

Таблица десятичных чисел в восьмеричной системе

Десятичное число Восьмеричное число
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24

Таблица восьмеричных чисел в двоичной системе

Восьмеричное число Двоичное число
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Оцените материал:

Загрузка...

Поделиться с друзьями:

8-ная и 16-ная системы счисления | Практическая информатика

При наладке аппаратных средств ЭВМ или создании новой программы возникает необходимость "заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последовательностями нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, например, комбинацией из 16 нулей и единиц.

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит -- 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы. Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

В восьмеричной (octal) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы -- 8. При записи отрицательных чисел перед последовательностью цифр ставят знак минус. Сложение, вычитание, умножение и деление чисел, представленных в восьмеричной системе, выполняются весьма просто подобно тому, как это делают в общеизвестной десятичной системе счисления. В различных языках программирования запись восьмеричных чисел начинается с 0, например, запись 011 означает число 9.

В шестнадцатеричной (hexadecimal) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита. При записи отрицательных чисел слева от последовательности цифр ставят знак минус. Для того чтобы при написании компьютерных программ отличить числа, записанные в шестнадцатеричной системе, от других, перед числом ставят 0x. То есть 0x11 и 11 -- это разные числа. В других случаях можно указать основание системы счисления нижним индексом.

Шестнадцатеричная система счисления широко используется при задании различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно задавать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления.

 

Что такое восьмеричный? - Определение из Техопедии

Что означает восьмеричное число?

Octal относится к системе счисления по основанию 8. Оно происходит от латинского слова «восемь». В восьмеричной системе счисления используются цифры 0-1-2-3-4-5-6-7. В вычислительных средах он обычно используется как более короткое представление двоичных чисел путем группирования двоичных цифр в тройки. Команда chmod в Linux или UNIX использует восьмеричное число для назначения прав доступа к файлам.

Techopedia объясняет Octal

Octal - еще один способ подсчета чисел.Хотя люди обычно считают десятками, а машины - двойками, можно использовать любое число в качестве основы для подсчета и вычислений. Некоторые индейские племена использовали восьмеричное число, считая промежутки между пальцами. Персонажи фильма «Аватар» 2009 года использовали восьмеричное число, потому что у них было по четыре пальца на каждой руке. Некоторые математики предложили более широкое распространение восьмеричного.

Использование восьмеричных чисел - удобный способ сокращения двоичных чисел. Начиная справа, сгруппируйте все двоичные цифры в наборы по три.Если в последней группе слева нет трех цифр, добавьте ноль. Каждая трехзначная двоичная группа преобразуется в однозначное восьмеричное число.

Начните с двоичного числа:

01011101

Сгруппируйте двоичное число в тройки. При необходимости добавьте слева ноль:

001-011-101

Преобразуйте каждую группу из трех цифр в восьмеричное число:

1-3-5

Объедините цифры, чтобы получить восьмеричное число:

135

Использование восьмеричного числа вместо двоичного позволяет сохранить цифры.На заре вычислений восьмеричное число часто использовалось для сокращения 12-битных, 24-битных или 36-битных слов. Шестнадцатеричные числа теперь чаще используются в программировании, что делает представления чисел даже короче восьмеричных.

В языках программирования для обозначения восьмеричной системы использовались различные символы, включая цифру 0, буквы o или q, комбинацию цифр и букв 0o или символ & или $. База-8 также может быть показана с помощью числа 8 в качестве нижнего индекса (например, 135 8 ).

Пожалуй, наиболее распространенное использование восьмеричного числа в современной вычислительной среде - это права доступа к файлам и каталогам Linux или UNIX.Используя команду chmod, администраторы могут назначать права чтения, записи и выполнения пользователям, группам и другим пользователям.

Восьмеричная система счисления

и преобразование двоичного числа в восьмеричное

Восьмеричная система счисления в принципе очень похожа на предыдущую шестнадцатеричную систему счисления, за исключением того, что в восьмеричной системе двоичное число делится на группы по 3 бита, причем каждая группа или набор битов имеют различное значение от 000 (0) и 111 (4 + 2 + 1 = 7).

Таким образом, восьмеричные числа

имеют диапазон только «8» цифр (0, 1, 2, 3, 4, 5, 6, 7), что делает их системой нумерации Base-8, и поэтому q равно «8».

Тогда основными характеристиками системы восьмеричной нумерации является то, что имеется только 8 отдельных счетных цифр от 0 до 7, причем каждая цифра имеет вес или значение только 8, начиная с младшего значащего бита (LSB). В первые дни вычислений восьмеричные числа и восьмеричная система счисления были очень популярны для подсчета входов и выходов, потому что, поскольку они работают в счетах до восьми, входы и выходы были в счетах по восемь, по байту за раз.

Поскольку основание системы Octal Numbers - 8 (основание 8), которое также представляет количество отдельных чисел, используемых в системе, индекс 8 используется для обозначения числа, выраженного в восьмеричном формате.Например, восьмеричное число выражается как: 237 8

Как и шестнадцатеричная система, «восьмеричная система счисления» предоставляет удобный способ преобразования больших двоичных чисел в более компактные и меньшие группы. Однако в наши дни восьмеричная система счисления используется реже, чем более популярная шестнадцатеричная система счисления, и почти исчезла как цифровая система счисления.

Представление восьмеричного числа

MSB Восьмеричное число LSB
8 8 8 7 8 6 8 5 8 4 8 3 8 2 8 1 8 0
16 мес. 2M 262к 32 КБ 512 64 8 1

Поскольку восьмеричная система счисления использует только восемь цифр (от 0 до 7), числа или буквы, превышающие 8, не используются, но преобразование из десятичной системы в восьмеричную и из двоичной в восьмеричную происходит по той же схеме, что и для шестнадцатеричной.

Чтобы считать больше 7 в восьмеричном, нам нужно добавить еще один столбец и начать заново аналогично шестнадцатеричному.

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21… и т. Д.

Снова не путайте, 10 или 20 это НЕ десять или двадцать это 1 + 0 и 2 + 0 в восьмеричной системе, точно так же, как и в шестнадцатеричной. Соотношение между двоичными и восьмеричными числами показано ниже.

Восьмеричные числа

Десятичное число 3-битное двоичное число Восьмеричное число
0 000 0
1 001 1
2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7
8 001 000 10 (1 + 0)
9 001 001 11 (1 + 1)
Продолжение вверх группами по три

Тогда мы можем видеть, что 1 восьмеричное число или цифра эквивалентно 3 битам, а с двумя восьмеричными числами, 77 8 , мы можем считать до 63 в десятичном виде, с тремя восьмеричными числами, 777 8 до 511 в десятичной системе с четырьмя восьмеричными числами, от 7777 8 до 4095 в десятичной системе и так далее.

Восьмеричные числа Пример №1

Используя наше предыдущее двоичное число 1101010111001111 2 , преобразуйте это двоичное число в его восьмеричный эквивалент (с основанием 2 в основание 8).

Двоичное значение 001101010111001111
Сгруппируйте биты в тройки, начиная с
с правой стороны
001 101010 111001 111
Восьмеричное число в форме 1 5 2 7 1 7 8

Таким образом, 001101010111001111 2 в двоичной форме эквивалентно 152717 8 в восьмеричной форме или 54,735 в денарной.

Восьмеричные числа Пример №2

Преобразует восьмеричное число 2322 8 в его десятичный эквивалент (с основанием 8 в основание 10).

Восьмеричное значение 2322 8
В полиномиальной форме = (2 × 8 3 ) + (3 × 8 2 ) + (2 × 8 1 ) + (2 × 8 0 )
Добавить результаты = (1024) + (192) + (16) + (2)
Десятичная форма числа равна: 1234 10

Затем преобразование восьмеричной системы в десятичную показывает, что 2322 8 в восьмеричной форме эквивалентно 1234 10 в десятичной форме.

Хотя Octal - это еще один тип цифровой системы нумерации, в наши дни он мало используется, вместо этого используется более широко используемая шестнадцатеричная система счисления, поскольку она более гибкая.

Восьмеричное определение

Восьмеричная система, также известная как «основание 8», - это система счисления, в которой восемь цифр (0–7) используются для представления любого целого числа.Восьмеричные значения иногда используются для представления данных в информатике, поскольку байты содержат восемь бит. Например, восьмеричное значение «10» может представлять 8 бит или 1 байт. «20» представляет 2 байта, 30 - 3 и т. Д. Восьмеричные значения также легко переводятся из двоичного, в котором используются две цифры, и из шестнадцатеричного, в котором используются 16 цифр.

Чтобы преобразовать восьмеричное значение в стандартное десятичное или «денарное» значение, умножьте каждую цифру на 8 n , где n - это место цифры, начиная с 0, справа налево.Затем сложите результаты. Итак, 123 в восьмеричном виде можно преобразовать в десятичное значение следующим образом:

8 0 x 3 + 8 1 x 2 + 8 2 x 1 = 3 + 16 + 64 = 83

В таблице ниже показаны несколько одинаковых значений в восьмеричном, десятичном, шестнадцатеричном и двоичном форматах:

Восьмеричное Десятичное Шестнадцатеричное Двоичное
1 1 1 1
10 8 8 1000
4061 28 101000
100 64 40 1000000
1234 668 29C 1010011100

Двоичное преобразование в восьмеричное

Чтобы преобразовать двоичное значение в восьмеричное, разделите цифры на группы по три, начиная справа налево.Затем умножьте каждую 1 или 0 на 2 n , где n - это место каждой цифры справа налево, начиная с 0. Например, чтобы преобразовать двоичное значение 1010011100 из приведенной выше таблицы, сначала разделите цифры как: 1 010 011 100. Затем умножьте значения следующим образом:

  1. 0x1 + 0x2 + 1x4 = 4
  2. 1x1 + 1x2 + 0x4 = 3
  3. 0x0 + 1x2 + 0x4 = 2
  4. 1x1 + 0x2 + 0x4 = 1

Полученное значение: окт. 1234 .Восьмеричные значения также могут отображаться с нижним индексом «8», например 1234 8 . Нижнюю строку вышеприведенной таблицы можно записать в нижнем индексе как:

.

1010011100 2 = 1234 8 = 668 10 = 29C 16

Обновлено: 12 марта 2021 г.

TechTerms - Компьютерный словарь технических терминов

Эта страница содержит техническое определение Octal. Он объясняет в компьютерной терминологии, что означает Octal, и является одним из многих технических терминов в словаре TechTerms.

Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания. Если вы найдете это восьмеричное определение полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования. Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, отправьте электронное письмо в TechTerms!

Подпишитесь на информационный бюллетень TechTerms, чтобы получать избранные термины и тесты прямо в свой почтовый ящик. Вы можете получать электронную почту ежедневно или еженедельно.

Подписаться

Основы чисел: восьмеричные и шестнадцатеричные

Purplemath

восьмеричное

Старая компьютерная система счисления - восьмеричная или восьмеричная.Цифры в восьмеричной математике: 0, 1, 2, 3, 4, 5, 6 и 7. Значение «восемь» записывается как «1 восемь и 0 единиц», или 10 8 .

С технической точки зрения существует очень много различных компьютерных протоколов для восьмеричного числа, но мы будем использовать простую математическую систему.

MathHelp.com

Несколько племен Нового Света использовали систему нумерации по основанию 8; они считали, используя восемь промежутков между пальцами, а не сами десять пальцев. Синие туземцы в фильме «Аватар» использовали восьмеричное число, потому что на их руках было всего четыре пальца.

Давайте копаем прямо:

  • Преобразует 357
    10 в соответствующее восьмеричное число.

Я сделаю обычное последовательное деление, на этот раз делю на 8 на каждом шаге:

Как только я добрался до «5» сверху, мне пришлось остановиться, потому что 8 не делится на 5.

Тогда соответствующее восьмеричное число будет 545 8 .


  • Преобразует 545
    8 в соответствующее десятичное число.

Я буду следовать обычной процедуре, перечисляя цифры в одной строке, а затем отсчитывая цифры от ПРАВОЙ в следующей строке, начиная с нуля:

Затем я сделаю обычное сложение и умножение:

5 × 8 2 + 4 × 8 1 + 5 × 8 0

= 5 × 64 + 4 × 8 + 5 × 1

= 320 + 32 + 5

= 357

Тогда соответствующее десятичное число будет 357 10 .


Шестнадцатеричный

Если вы работаете с компьютерным программированием или компьютерной инженерией (или компьютерной графикой, о которой мы поговорим позже), вы столкнетесь с основанием шестнадцати, или шестнадцатеричной, математикой.

Как упоминалось ранее, десятичная математика не имеет одной единственной цифры, представляющей значение «десять». Вместо этого мы используем две цифры, 1 и 0: «10».Но в шестнадцатеричной математике столбцы означают число, кратное шестнадцати! То есть в первом столбце указано, сколько у вас единиц, во втором столбце указано количество шестнадцати, в третьем столбце указано, сколько двести пятьдесят шесть (шестнадцать раз по шестнадцать) и так далее.

В базе десять у нас были цифры от 0 до 9. В базе восемь у нас были цифры от 0 до 7. В базе 4 у нас были цифры от 0 до 3. В любой базовой системе у вас будут цифры от 0 до единицы меньше, чем -ваша-база.Это означает, что в шестнадцатеричном формате нам нужны «цифры» от 0 до 15. Для этого нам понадобятся одиночные цифры, обозначающие значения «десять», «одиннадцать», «двенадцать», «тринадцать», «четырнадцать» и «пятнадцать». Но мы этого не делаем. Поэтому вместо этого мы используем буквы. То есть, считая в шестнадцатеричном формате, шестнадцать «цифр» равны:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Другими словами, A - это десять в «обычных» числах, B - это одиннадцать, C - двенадцать, D - тринадцать, E - четырнадцать, а F - пятнадцать.Именно это использование букв для цифр делает шестнадцатеричные числа поначалу такими странными. Но преобразования работают обычным образом.

  • Преобразует 357
    10 в соответствующее шестнадцатеричное число.

Здесь я буду делить несколько раз на 16, отслеживая остатки по ходу дела. (Вы можете использовать для этого бумагу для заметок.) ​​

Считывая цифры, начиная сверху и заканчивая правой стороной, я вижу, что:


  • Преобразует 165
    16 в соответствующее десятичное число.

Перечислите цифры и отсчитайте их справа, начиная с нуля:

Помните, что каждая цифра в шестнадцатеричном числе представляет, сколько копий вам нужно от этой степени шестнадцати, и преобразуйте это число в десятичное:

1 × 16 2 + 6 × 16 1 + 5 × 16 0

= 1 × 256 + 6 × 16 + 5 × 1

= 256 + 96 + 5

= 357

Тогда 165 16 = 357 10 .


  • Преобразует 63933
    10 в соответствующее шестнадцатеричное число.

Я буду делить несколько раз на 16, отслеживая остатки:

Из последовательного деления, приведенного выше, я вижу, что шестнадцатеричное число будет иметь «пятнадцать» в столбце с шестнадцатью квадратами, «девять» в столбце с шестнадцатью квадратами, «одиннадцать» в столбце с шестнадцатью квадратами и « тринадцать дюймов в колонке единиц.Но я не могу записать шестнадцатеричное число как «15», потому что это будет сбивать с толку и неточно. Поэтому я буду использовать буквы для «цифр», которые в противном случае были бы слишком большими, позволяя «F» заменить «пятнадцать», «B» заменить «одиннадцать», а «D» заменить «тринадцать».

Тогда 63933 10 = F9BD 16 .


  • Преобразует F9BD в десятичную систему счисления.

Я перечислю цифры и отсчитаю их справа, начиная с нуля:

На самом деле, вероятно, будет полезно повторить это, преобразовав буквенные шестнадцатеричные «цифры» в соответствующие им «обычные» десятичные значения:

Теперь сделаю умножение и сложение:

15 × 16 3 + 9 × 16 2 + 11 × 16 1 + 13 × 16 0

= 15 × 4096 + 9 × 256 + 11 × 16 + 13 × 1

= 61440 + 2304 + 176 + 13

= 63933

Как и ожидалось, F9BD 16 = 63933 10 .


Компьютерная графика

Если вы работаете с веб-страницами и графическими программами, вам может быть полезно преобразовать значения RGB (для изображения в графической программе) в шестнадцатеричные значения (для соответствующего цвета фона на веб-странице).

Графические программы работают со значениями RGB (красный-зеленый-синий) для цветов. Каждый из этих компонентов данного цвета имеет значения от 0 до 255.Эти значения могут быть преобразованы в шестнадцатеричные значения от 00 до FF. Если вы перечислите компоненты RGB цвета в виде строки из трех чисел, вы можете получить, скажем, R: 204, G: 51, B: 255, что переводится в светло-пурпурный # CC33FF в кодировке HTML. Обратите внимание, что 204 10 = CC 16 , 51 10 = 33 16 и 255 10 = FF 16 .

Партнер

С другой стороны, если у вас есть код для # 9

, это будет преобразовано в темно-красноватый R: 153, G: 0, B: 51 в вашей графической программе.То есть, чтобы преобразовать вашу графическую программу в кодировку веб-страницы, используйте шестнадцатеричное число не как одно шестизначное число, а как три двузначных числа, и преобразуйте эти пары цифр в соответствующие значения RGB.

Для обсуждения истории «безопасных для Интернета» цветов, в том числе того, почему они включают только шестнадцатеричные эквиваленты 0, 51, 102, 153, 204 и 255, смотрите здесь. Для демонстрации различных цветов текста и фона в HTML посмотрите здесь.


URL: https://www.purplemath.com/modules/numbbase3.htm

Двоичная, шестнадцатеричная и восьмеричная система счисления

Двоичная, шестнадцатеричная и восьмеричная относятся к разным системам счисления. Тот, который мы обычно используем, называется десятичным. Эти системы счисления относятся к количеству символов, используемых для представления чисел.В десятичной системе мы используем десять различных символов: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. С помощью этих десяти символов мы можем представить любую величину. Например, если мы видим 2, значит, мы знаем, что есть два чего-то. Например, в конце этого предложения две точки.

Когда у нас заканчиваются символы, мы переходим к размещению следующей цифры. Чтобы представить единицу больше 9, мы используем 10, что означает одну единицу из десяти и ноль единиц. Это может показаться элементарным, но очень важно понимать нашу систему счисления по умолчанию, если вы хотите понимать другие системы счисления.

Например, когда мы рассматриваем двоичную систему, которая использует только два символа, 0 и 1, когда у нас заканчиваются символы, нам нужно перейти к размещению следующей цифры. Итак, мы будем считать в двоичном формате 0, 1, 10, 11, 100, 101 и так далее.

В этой статье мы более подробно обсудим двоичную, шестнадцатеричную и восьмеричную системы счисления и объясним их использование.

Системы счисления используются для описания количества чего-либо или представления определенной информации. В связи с этим могу сказать, что слово «калькулятор» состоит из десяти букв.Наша система счисления, десятичная система, использует десять символов. Следовательно, десятичным считается Base Ten . Описывая системы с помощью оснований, мы можем понять, как работает эта конкретная система.

Когда мы считаем по базе десять, мы считаем, начиная с нуля и заканчивая девятью по порядку.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,…

Когда мы дойдем до последнего символа, мы создадим новое размещение перед первым и посчитаем его.

8, 9, 1 0, 11, 12,…, 19, 2 0,…


Это продолжается, когда у нас заканчиваются символы для этого места размещения.Итак, после 99 мы переходим к 100.

Размещение символа указывает, сколько он стоит. Каждое дополнительное размещение дает дополнительную степень 10. Рассмотрим число 2853. Мы знаем, что это число довольно велико, например, если оно относится к количеству яблок в корзине. Это много яблок. Как мы узнаем, что он большой? Смотрим количество цифр.

Каждое дополнительное размещение - это дополнительная степень 10, как указано выше. Рассмотрим эту диаграмму.
10 3 10 2 10 1 10 0
цифра цифра цифра цифра
* 1000 * 100 * 10 * 1

Каждая дополнительная цифра представляет все большее и большее количество.Это применимо как для Base 10, так и для других баз. Знание этого поможет вам лучше понять другие основы.

двоичный

Binary - это еще один способ сказать Base Two. Итак, в двоичной системе счисления для представления чисел используются только два символа: 0 и 1. Когда мы считаем с нуля в двоичной системе счисления, символы заканчиваются гораздо чаще.

Отсюда больше нет символов. Мы не переходим к 2, потому что в двоичном формате 2 не существует. Вместо этого мы используем 10.В двоичной системе 10 равно 2 в десятичной системе счисления.

Мы можем считать дальше.

Двоичный 0 1 10 11 100 101 110 111 1000 1001 1010
Десятичное число 0 1 2 3 4 5 6 7 8 9 10
Как и в десятичной системе счисления, мы знаем, что чем больше цифр, тем больше число.Однако в двоичном формате мы используем степени двойки. В двоичном числе 1001101 мы можем создать диаграмму, чтобы узнать, что это на самом деле означает.
2 6 2 5 2 4 2 3 2 2 2 1 2 0
1 0 0 1 1 0 1
64 + 0 + 0 + 8 + 4 + 0 + 1
77

Однако, поскольку это основание два, числа не становятся такими большими, как в десятичном.Тем не менее, двоичное число из 10 цифр будет больше 1000 в десятичном.


Двоичная система используется в информатике и электротехнике. Транзисторы работают от двоичной системы, и транзисторы можно найти практически во всех электронных устройствах. 0 означает отсутствие тока, а 1 означает разрешение тока. Когда различные транзисторы включаются и выключаются, сигналы и электричество отправляются для выполнения различных действий, например, для совершения звонка или вывода этих букв на экран.

Компьютеры и электроника работают с байтами или восьмизначными двоичными числами. Каждый байт содержит закодированную информацию, которую компьютер способен понять. Многие байты объединяются в цепочки для формирования цифровых данных, которые можно сохранить для дальнейшего использования.

восьмеричный

Octal - это еще одна система счисления, в которой используется меньше символов, чем в нашей традиционной системе счисления. Восьмеричный формат является модным для Base Eight, что означает, что восемь символов используются для представления всех величин. Это 0, 1, 2, 3, 4, 5, 6 и 7.Когда мы считаем единицу из 7, нам нужно новое размещение, чтобы представить то, что мы называем 8, поскольку 8 не существует в Octal. Итак, после 7 будет 10.

восьмеричный 0 1 2 3 4 5 6 7 10 11 12… 17 20… 30… 77 100
Десятичное число 0 1 2 3 4 5 6 7 8 9 10… 15 16… 24… 63 64

Точно так же, как мы использовали степень десяти в десятичной системе и степень двойки в двоичной системе, для определения значения числа мы будем использовать степень восьмерки, поскольку это основание восемь.Рассмотрим число 3623 по основанию восемь.

8 3 8 2 8 1 8 0
3 6 2 3
1536 + 384 + 16 + 3
1939

Каждое дополнительное размещение слева имеет большую ценность, чем в двоичном формате. Третья цифра справа в двоичном формате представляет только 2 3-1 , то есть 4.В восьмеричном формате это 8 3-1 , что равно 64.

Шестнадцатеричный

Шестнадцатеричная система счисления - основание шестнадцати. Как следует из ее основания, эта система счисления использует шестнадцать символов для представления чисел. В отличие от двоичного и восьмеричного, шестнадцатеричный имеет шесть дополнительных символов, которые он использует помимо обычных, найденных в десятичном. Но что будет после 9? 10 - это не одна цифра, а две ... К счастью, по соглашению, когда необходимы дополнительные символы помимо обычных десяти, должны использоваться буквы.Итак, в шестнадцатеричном формате общий список используемых символов составляет 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E и F. На цифровом дисплее , числа B и D строчные.

При шестнадцатеричном счете вы считаете 0, 1, 2 и так далее. Однако, когда вы достигнете 9, вы перейдете прямо к A. Затем вы считаете B, C, D, E и F. Но что дальше? У нас закончились символы! Когда у нас заканчиваются символы, мы создаем новое расположение цифр и идем дальше. Итак, после F будет 10. Вы продолжаете считать, пока не дойдете до 19. После 19 следующее число - 1A.Это продолжается вечно.

Шестнадцатеричный 9 А B С D E F 10 11… 19 1A 1С… 9F A0
Десятичное число 9 10 11 12 13 14 15 16 17 25 26 27 28 159 160

Цифры объясняются как степень 16.Рассмотрим шестнадцатеричное число 2DB7.

16 3 16 2 16 1 16 0
2 D B 7
8192 + 3328 + 176 + 7
11703

Как видите, размещение в шестнадцатеричной системе счисления намного дороже, чем в любой из трех других систем счисления.

Важно знать, что 364 в восьмеричной системе счисления - это , а не , равное нормальному 364.Это похоже на то, как 10 в двоичном формате определенно не является 10 в десятичном. 10 в двоичном формате (с этого момента будет записываться как 10 2 ) равно 2. 10 8 равно 8. Откуда мы это знаем? Что такое 20C.38F 16 и как нам узнать?

Вот почему важно понимать, как работают системы счисления. Используя нашу степень основного числа, становится возможным превращать любое число в десятичное, а из десятичного - в любое.

От основания к десятичной системе

Итак, мы знаем, что 364 8 не равно десятичному числу 364.{p-1} + ... + v_1B + v_0 \ end {формула}

Где V 10 - десятичное значение, v - цифра в размещении, p - это размещение справа от числа, предполагая, что крайнее правое размещение равно 0, а B - начальная база. Не пугайтесь формулы! Мы собираемся пройти через это шаг за шагом.

Итак, допустим, у нас есть простое шестнадцатеричное число 2B. Мы хотим знать, что это за число в десятичной системе, чтобы лучше понять его. как нам это сделать?

Воспользуемся формулой выше.Сначала определите каждую переменную. Мы хотим найти V 10 , так что это неизвестно. Число 2B 16 имеет две позиции, так как оно состоит из двух цифр. Следовательно, p на единицу меньше этого значения, поэтому p равно 1. Число в базе 16, поэтому B равно 16. Наконец, мы хотим знать, что такое v, но есть несколько v. У вас v 1 и v 0 . Это относится к значению цифры в позиции индекса. v 1 относится к цифре в первой позиции (вторая цифра справа).0) \\ V_ {10} = 2 (16) +11 (1) \\ V_ {10} = 32 + 11 \ V_ {10} = 43 \\ \ end {align}

Следовательно, 2B 16 равно 43.

Теперь позвольте мне объяснить, как это работает. Помните, как расположение цифр влияет на фактическое значение? Например, в десятичном числе 123 «1» представляет 100, что составляет 1 * 10 2 . «2» - это 20 или 2 * 10 1 . Аналогично, в числе 2B 16 "2" - это 2 * 16 1 , а B - 11 * 16 0 .

Таким образом мы можем определить значение чисел.Для числа 364 8 мы создадим диаграмму, которая показывает десятичное значение каждой отдельной цифры. Затем мы можем сложить их, чтобы получить целое. Число состоит из трех цифр, поэтому, начиная справа, у нас есть позиция 0, позиция 1 и позиция 2. Поскольку это основание восемь, мы будем использовать степень 8.

Теперь 8 2 это 64. 8 1 это 8. 8 0 это 1. Что теперь?

Помните, что мы сделали с десятичным числом 123? Мы взяли значение цифры , умноженное на соответствующую степень.Итак, учитывая это дальше…

Теперь мы складываем значения вместе, чтобы получить 244. Следовательно, 364 8 равно 244 10 .

Точно так же, как для 123, мы говорим, что есть одна группа по 100, две группы по 10 и три группы по 1, для восьмеричной системы и числа 364 существуют три группы по 64, шесть групп по 8 и четыре группы по 1.

от десятичной дроби к основанию

Точно так же, как мы можем преобразовать из любого основания в десятичное, можно преобразовать десятичное в любое основание.p \\ (4) \ hspace {6pt} Повторяйте шаги \ hspace {4pt} с \ hspace {4pt} 1 \ hspace {4pt} через \ hspace {4pt} 3 \ hspace {4pt}, пока \ hspace {4pt} p = 0 \\ \ end {align}

Сначала этот алгоритм может показаться запутанным, но давайте рассмотрим пример, чтобы увидеть, как его можно использовать. Мы хотим представить 236 в двоичном, восьмеричном и шестнадцатеричном формате. Итак, давайте сначала попробуем преобразовать его в двоичный код.

Первый шаг - сделать p равным $ \ operatorname {int} (\ sqrt [B] {V}) $. B - это база, в которую мы хотим преобразовать 2.V - это число, которое мы хотим преобразовать, 236. По сути, мы извлекаем квадратный корень из 236 и игнорируем десятичную часть. В результате p становится равным 7.

Шаг второй говорит, что пусть v равно нашему числу V, деленному на B p . B p равно 2 7 , или 128, а целая часть 236, деленная на 128, равна 1. Следовательно, наша первая цифра слева равна 1. Теперь мы фактически меняем V, чтобы стать V минус цифра, умноженная на В стр . Итак, V теперь будет 236-128 или 108.

Мы просто повторяем процесс до тех пор, пока p не станет равным нулю. Когда p становится равным нулю, мы завершаем шаги в последний раз, а затем заканчиваем.

Итак, поскольку V теперь равно 108, p становится 6. P \ end {уравнение}

На человеческом языке: значение шифра в числе равно значению самого шифра, умноженному на основание системы счисления в степень позиции шифра слева направо в числе, начиная с при 0.Прочтите это несколько раз и попытайтесь понять.

Таким образом, значение цифры в двоичном формате удваивается на каждый раз, когда мы перемещаемся влево. (см. таблицу ниже)

Из этого следует, что каждый шестнадцатеричный шифр можно разбить на 4 двоичных разряда. На компьютерном языке: кусочек. Теперь взгляните на следующую таблицу:

Двоичные числа
8 4 2 1 Шестнадцатеричное значение Десятичное значение
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 2 2
0 0 1 1 3 3
0 1 0 0 4 4
0 1 0 1 5 5
0 1 1 0 6 6
0 1 1 1 7 7
1 0 0 0 8 8
1 0 0 1 9 9
1 0 1 0 А 10
1 0 1 1 B 11
1 1 0 0 С 12
1 1 0 1 D 13
1 1 1 0 E 14
1 1 1 1 F 15

Еще один интересный момент: посмотрите на значение в верхней части столбца.Тогда посмотрите на значения. Вы понимаете, о чем я? Да, ты прав! Биты включаются и выключаются в зависимости от своего значения. Значение первой цифры (начиная справа) выглядит следующим образом: 0,1,0,1,0,1,0,1,0,1,… Вторая цифра: 0,0,1,1,0 , 0,1,1,0,0,1,1,0,0… Третья цифра (значение = 4): 0,0,0,0,1,1,1,1,0,0,0,0 , 1,1,1,1,… И так далее…

А как насчет больших чисел? Поэтому нам понадобится дополнительная цифра. (но я думаю, вы догадались сами). Для значений начиная с 16 наша таблица выглядит так:

Двоичные числа
16 8 4 2 1 Шестнадцатеричное значение Десятичное значение
1 0 0 0 0 10 16
1 0 0 0 1 11 17
1 0 0 1 0 12 18
1 0 0 1 1 13 19
1 0 1 0 0 14 20
1 0 1 0 1 15 21
1 0 1 1 0 16 22
1 0 1 1 1 17 23
1 1 0 0 0 18 24
1 1 0 0 1 19 25
1 1 0 1 0 1A 26
1 1 0 1 1 27
1 1 1 0 0 28
1 1 1 0 1 1D 29
1 1 1 1 0 1E 30
1 1 1 1 1 1 этаж 31
Для восьмеричных чисел это аналогично, с той лишь разницей, что нам нужно всего 3 цифры для выражения значений 1-> 7.Наша таблица выглядит так:
Двоичные числа
4 2 1 Восьмеричное значение Десятичное значение
0 0 0 0 0
0 0 1 1 1
0 1 0 2 2
0 1 1 3 3
1 0 0 4 4
1 0 1 5 5
1 1 0 6 6
1 1 1 7 7

В последней теме я объяснил логику двоичной, шестнадцатеричной и восьмеричной систем счисления.Теперь я объясню кое-что более практичное. Если вы полностью поняли предыдущее, можете пропустить эту тему.

Из десятичного числа в двоичное

  • Шаг 1. Убедитесь, что ваш номер нечетный или четный.
  • Шаг 2: Если четный, напишите 0 (двигаясь в обратном направлении, добавляя двоичные цифры слева от результата).
  • Шаг 3: В противном случае, если он нечетный, напишите 1 (таким же образом).
  • Шаг 4: Разделите ваше число на 2 (отбрасывая любую дробь) и вернитесь к шагу 1. Повторяйте, пока ваше исходное число не станет 0.

Пример:
Преобразование 68 в двоичное:

  • 68 четное, поэтому пишем 0.
  • Разделив 68 на 2, получим 34.
  • 34 тоже четное, поэтому пишем 0 (пока результат - 00)
  • Разделив 34 на 2, получим 17.
  • 17 нечетное число, поэтому пишем 1 (пока результат - 100 - не забудьте добавить его слева)
  • Разделив 17 на 2, мы получим 8,5, или всего 8.
  • 8 четное, поэтому пишем 0 (пока результат - 0100)
  • Разделив 8 на 2, получим 4.
  • 4 четное, поэтому пишем 0 (пока результат - 00100)
  • Разделив 4 на 2, получим 2.
  • 2 чётно, поэтому пишем 0 (пока результат - 000100)
  • Разделив 2 на 2, получим 1.
  • 1 нечетное, поэтому пишем 1 (пока результат - 1000100)
  • Разделив на 2, мы получим 0,5 или просто 0, так что все готово.
  • Конечный результат: 1000100

Из двоичного в десятичный

  • Запишите значения в таблицу, как показано выше. (или сделайте это мысленно)
  • Добавьте значение в заголовке столбца к своему номеру, если цифра включена (1).
  • Пропустить, если значение в заголовке столбца выключено (0).
  • Переходите к следующей цифре, пока не закончите все.

Пример:
Преобразование 101100 в десятичное:

  • Наивысшая цифра значения: 32. Текущий номер: 32
  • Пропустите цифру «16», ее значение равно 0. Текущий номер: 32
  • Добавить 8. Текущий номер: 40
  • Добавить 4. Текущий номер: 44
  • Пропустите цифры "2" и "1", так как их значение равно 0.
  • Окончательный ответ: 44

Из десятичного в шестнадцатеричный.

ЭТО ТОЛЬКО ОДИН ИЗ МНОГИХ СПОСОБОВ!

  • Преобразуйте десятичное число в двоичное
  • Разделить на 4 полубайта, начиная с конца
  • Посмотрите на первую таблицу на этой странице и напишите правильный номер вместо полубайта

(вы можете добавить нули в начале, если количество битов не делится на 4, потому что, как и в десятичном, это не имеет значения)

Пример:
Преобразование 39 в шестнадцатеричное:

  • Сначала преобразуем в двоичный (см. Выше).Результат: 100111
  • Затем мы разбиваем его на полубайты: 0010/0111 (Примечание: я добавил два нуля, чтобы прояснить тот факт, что это полубайты)
  • После этого преобразуем полубайты отдельно.
  • Окончательный результат: 27

Из шестнадцатеричного в десятичный

* Проверьте формулу в первом абзаце и используйте ее для шифров в шестнадцатеричном числе. (это действительно работает для любого преобразования в десятичную систему счисления)

Пример:
Преобразование 1AB в десятичное:

  • Значение B = 16 0 × 11.Это дает 11, очевидно,
  • Значение A = 16 1 × 10. Это дает 160. Наш текущий результат - 171.
  • Значение 1 = 16 2 × 1. Это дает 256.
  • Окончательный результат: 427

От десятичной к восьмеричной

  • Преобразовать в двоичный.
  • Разделить на части по 3 цифры, начиная справа.
  • Преобразование каждой части в восьмеричное значение от 0 до 7

Пример: преобразование 25 в восьмеричное

  • Сначала преобразуем в двоичный.Результат: 11001
  • Далее мы разделились: 011/001
  • Преобразование в восьмеричное: 31

От восьмеричного к десятичному

Снова применим формулу сверху

Пример: преобразовать 42 в десятичное

  • Значение 2 = 8 0 × 2 = 2
  • Значение 4 = 8 1 × 4 = 32
  • Результат: 34

Хорошо, это может быть не на 100% "забавным", но тем не менее интересно.

  • Вы склонны видеть числа, начинающиеся с 0x? Это обычная запись для указания шестнадцатеричных чисел, поэтому вы можете увидеть что-то вроде:
  0x000000
0x000002
0x000004 
 

Эта нотация чаще всего используется для перечисления адресов компьютеров, а это совсем другая история.
  • Это довольно очевидно, но вы можете «писать» слова, используя шестнадцатеричные числа. Например:
    • CAB = 3243 в десятичной системе счисления.

Вы все поняли? Если вы так думаете, проверьте себя:

Корзина декабрь шестигранник
3A
76
101110
88
1011110
47

Сделайте несколько упражнений самостоятельно, если хотите еще.

Система счисления в компьютере - Байт-примечания

«Набор значений , используемых для представления различных величин, известен как Система счисления ». Например, система счисления может использоваться для представления количества студентов в классе или количества зрителей, просматривающих определенную телепрограмму и т. Д. Цифровой компьютер представляет все виды данных и информации в двоичных числах. Он включает аудио, графику, видео, текст и числа.Общее количество цифр, используемых в системе счисления, называется основанием или основанием системы счисления. База пишется после числа как нижний индекс, например 51210.

Вот некоторые важные системы счисления.

  • Десятичная система счисления
  • Двоичная система счисления
  • Восьмеричная система счисления
  • Шестнадцатеричная система счисления

Обычно используется десятичная система счисления. Однако в компьютерах используется двоичная система счисления. В компьютере используются восьмеричная и шестнадцатеричная системы счисления.

Десятичная система счисления

См. Также: Преобразование десятичных чисел в двоичные числа

Десятичная система счисления состоит из десяти цифр от 0 до 9. Эти цифры могут использоваться для представления любого числового значения. Основание десятичной системы счисления - 10. Это наиболее широко используемая система счисления. Значение, представленное отдельной цифрой, зависит от веса и положения цифры.

Каждое число в этой системе состоит из цифр, которые находятся в разных позициях.Положение первой цифры слева от десятичной точки равно 0. Положение второй цифры слева от десятичной точки равно 1. Точно так же положение первой цифры справа от десятичной точки равно -1. Положение второй цифры справа от десятичной точки равно -2 и так далее.

Значение числа определяется умножением цифр на вес их позиции и сложением результатов. Этот метод известен как метод расширения. Самая правая цифра числа имеет наименьший вес.Эта цифра называется наименьшей значащей цифрой (LSD). Самая левая цифра числа имеет наибольший вес. Эта цифра называется наиболее значимой цифрой (MSD). Цифра 7 в числе 724 - самая старшая цифра, а 4 - самая младшая.

См. Также: База чисел

Пример:

Вес и позиция каждой цифры числа 453 следующие:

Позиция

2

1

0

Вес

102

101

100

Номинал

4

5

3

В приведенной выше таблице указано, что:

Значение цифры 4 = 4 × 102 = 400

Значение цифры 4 = 5 × 10 = 50

Значение цифры 3 = 3 × 10 = 3

Фактическое число можно найти, сложив значения, полученные с помощью цифр, следующим образом:

400 + 50 + 3 = 45310

Пример:

Вес и позиция каждой цифры числа 139.78 следующие.

Позиция

2

1

0

–1

-2

Вес

102

101

100

.

10-1

10-2

Номинальная стоимость

1

3

9

7

8

В приведенной выше таблице указано, что:

Значение цифры 1 = 1 × 102 = 100

Значение цифры 3 = 3 × 101 = 30

Значение цифры 9 = 9 × 100 = 9

Значение цифры 7 = 7 × 10-1 = 0.7

Значение цифры 8 = 8 × 10-2 = 0,08

Фактическое число можно найти, сложив значения, полученные с помощью цифр, следующим образом:

100 + 30 + 9 + 0,7 + 0,8 = 139,78

Двоичная система счисления

Цифровой компьютер представляет все виды данных и информации в двоичной системе. Двоичная система счисления состоит из двух цифр 0 и 1. Ее основание - 2. Каждая цифра или бит в двоичной системе счисления может быть 0 или 1.Комбинация двоичных чисел может использоваться для представления различных величин, таких как 1001. Позиционное значение каждой цифры в двоичном числе в два раза больше разрядного или номинального значения цифры его правой стороны. Вес каждой позиции равен 2.

Разрядность цифр в соответствии с положением и весом выглядит следующим образом:

Позиция

3

2

1

0

Вес

23

22

21

20

Пример: преобразование десятичного числа 101112

Позиция

2

1

0

–1

-2

Вес

102

101

100

10-1

10-2

Номинальная стоимость

1

3

9

7

8

101112 = 1 х 24 + 0 х 23 + 1 х 22 + 1 х 21 + 1 х 20

= 1 х 16 + 0 + 1 х 4 + 1 х 2 + 1 х 1

= 16 + 0 + 4 2 + 1

= 2310

Пример: преобразовать 101.1012

Позиция

2

1

0

–1

-2

-3

Номинальная стоимость

1

0

1

.

1

0

1

Масса

24

21

20

2-1

2-2

2-3

101.1012 = 1 x 22 + 0x21 + 1 x 20 + 1x 2-1 + 0 x 2-2 + 1 x 2-3

= 1 х 4 + 0 + 1 х 1 + ½ + 0 + 1/8

= 4 + 0 + 1 + 0,5 + 0,125

= 5,62510

Восьмеричная система счисления

Восьмеричная система счисления

состоит из восьми цифр от 0 до 7. Основа восьмеричной системы - 8. Каждая цифра в этой системе представляет собой степень 8.Любая цифра в этой системе всегда меньше 8. Восьмеричная система счисления используется как сокращенное представление длинных двоичных чисел. Число 6418 недействительно в этой системе счисления, так как 8 не является действительной цифрой.

Значение разряда каждой цифры в соответствии с положением и весом выглядит следующим образом.

Позиция

4

3

2

1

0

Масса

84

83

82

81

80

Пример: преобразовать 458 в десятичное число

458 = 4 х 81 + 5 х 80

= 4 х 8 + 5 х 1

= 32 + 5

= 3710

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления состоит из 16 цифр от 0 до 9 и от A до F.Алфавиты от A до F представляют собой десятичные числа от 10 до 15. Основание этой системы счисления - 16. Каждая цифра в шестнадцатеричной системе представляет собой степень 16. Число 76416 является действительным шестнадцатеричным числом. Он отличается от 76410, который составляет семьсот шестьдесят четыре. Эта система счисления обеспечивает быстрый способ представления длинных двоичных чисел.

Значение разряда каждой цифры в соответствии с положением и весом выглядит следующим образом:

Позиция

4

3

2

1

0

Вес

164

163

162

161

160

Пример: преобразование 3A16 в десятичное число

3A16 = 3 x 161 + A x 160

= 3 х 16 + 10 х 1

= 48 + 10

= 5810

преобразований

преобразований

Принципы CS

Это упражнение знакомит с концепцией, на которой построено абстракций. двоичные последовательности могут использоваться для представления всех цифровых данных .Здесь также представлена ​​концепция алгоритма . Это фокусируется на следующих целях обучения:
  • 5б. Объяснение того, как системы счисления, включая двоичные и десятичные, используются для рассуждений о цифровых данных.
  • 16а. Использование естественного языка, псевдокода, визуального или текстового языка программирования для выражения алгоритма.

Вступление

Предполагается, что вы выполнили домашнее задание по двоичному и шестнадцатеричные системы счисления.Эта домашняя работа описывала, как работают двоичные, десятичные и шестнадцатеричные системы счисления и показали, как конвертировать из одной системы счисления в другую.

В этом уроке мы хотим обобщить то, что мы узнали, увидев эти системы счисления как конкретные примеры более общей концепции, позиционная система счисления .

Мы разработаем алгоритмов , которые позволят вам выполнять преобразования из одной системы счисления в другую.

Тип обобщения, который мы делаем в этом уроке, - это еще один пример принципа абстракции в информатике - здесь мы сосредотачиваемся на общей схеме, которая верна для всех позиционные системы счисления.

Алгоритмы и псевдокод

Алгоритм представляет собой пошаговую процедуру для выполнения некоторых вычислений. Например, шаги, которые вы выполняете в приложении Hello Purr , когда кнопка clicked - это пример простого двухэтапного алгоритма:

Чтобы помочь нам рассказать об алгоритмах, мы будем использовать псевдокод, язык или обозначение, которые имеют многие структуры язык программирования, но его легко читать. Псевдокоды на полпути между естественными языками, такими как английский, и формальным программированием языков.

Позиционные системы счисления

Давайте рассмотрим некоторые ключевые моменты, которые вы усвоили в книге Хан Видео Академии.

  • Наша десятичная система счисления (а также двоичная и шестнадцатеричная систем) являются частными примерами более общей концепции позиционный система счисления.
  • В позиционной системе счисления один и тот же символ может обозначать различные значения в зависимости от позиции (или позиции ) в цифра. Например, в 91 9 представляет 90 (10-е место). но в 19 он представляет собой 9 (первое место).Сравните это с тем, как символы работают в непозиционной системе, например римские цифры, где X всегда представляет 10.
  • Основание числовой системы представляет собой количество символы, которые он имеет:
    Имя База Символы
    Десятичное 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
    Двоичное 2 0 , 1
    Шестнадцатеричный 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
    Восьмеричный 8 0, 1, 2, 3, 4, 5, 6, 7
  • В позиционных системах счисления используется возведение в степень от до определить значение символа в зависимости от его места.Мы можем использовать это идея перевести из любой системы в десятичную:
    Система База Значение Формула преобразования Десятичное значение
    Десятичное 10 104 (1 × 10 2 ) + (0 × 10 1 ) + ( 4 × 10 0 ) 100 + 0 + 4 = 104
    Двоичный 2 111 (1 × 2 2 ) + (1 × 2 1 ) + (1 × 2 0 ) 4 + 2 + 1 = 7
    Восьмеричное 8 104 (1 × 8 2 ) + (0 × 8 1 ) + (4 × 8 0 ) 64 + 0 + 4 = 68
    Шестнадцатеричный 16 FEC (F × 16 2 ) + (E × 16 1 ) + (C × 8 0 ) 15 × 256 + 14 × 16 + 12 × 1 = 3840 + 224 + 12 = 4076

Алгоритмы преобразования

Давайте резюмируем эти формулы преобразования, разработав общий алгоритм, который преобразует любую систему счисления в десятичную.

Алгоритм преобразования любой системы счисления в десятичную систему счисления

  1. Пусть n будет количеством цифр в номере. Например, 104 состоит из 3 цифр, поэтому n = 3 .
  2. Пусть b будет основанием числа. Например, 104 является десятичным, поэтому b = 10 .
  3. Пусть s будет промежуточным итогом, изначально равным 0.
  4. Для каждой цифры в номере, работая слева направо, выполните:
    Вычтем 1 из n .
    Умножьте цифру на b n и прибавьте к s .
  5. Когда вы закончите со всеми цифрами в номере, его десятичное значение будет с

Попробуем на двоичном числе 1011.

Пусть n = 4.
Пусть b = 2.
Пусть s = 0.
   Первая цифра, 1: n = 3, 1 × b  n  равно 1 × 2  3  = 8. Итак, s = 8.
   Вторая цифра, 0: n = 2, 0 × b  n  - это 0 × 2  2  = 0. Итак, s = 8.
   Третья цифра, 1: n = 1, 1 × b  n  равно 1 × 2  1  = 2. Итак, s = 10.
   Последняя цифра, 1: n = 0, 1 × b  n  - 1 × 2  0  = 1.Итак, 1011  2  = 11  10 
 
Цифра n Значение = Цифра * b n Промежуточная сумма
1 3 1 × 2 3 = 8 8
0 2 0 × 2 2 = 0 8
1 1 1 × 2 1 = 2 10
1 0 1 × 2 0 = 1 11

Попробуем на шестнадцатеричном числе 7E.

Пусть n = 2.
Пусть b = 16.
Пусть s = 0.
   Первая цифра, 7: n = 1, 7 × b  n  равно 7 × 16  1  = 7 × 16 = 112. Итак, s = 112.
   Последняя цифра, E: n = 0, 14 × b  n  составляет 14 × 16  0  = 14. Таким образом, s = 112 + 14 = 126. Итак, 7E  16  = 126  10 
 
Цифра n Значение = Цифра * b n Промежуточная сумма
7 1 7 × 16 1 = 112 114
E 0 14 × 16 0 = 14 126

Давайте попробуем на восьмеричном числе 124.

Пусть n = 3.
Пусть b = 8.
Пусть s = 0.
   Первая цифра, 1: n = 2, 1 × b  n  равно 1 × 8  2  = 1 × 64 = 64. Итак, s = 64.
   Вторая цифра, 2: n = 1, 2 × b  n  равно 2 × 8  1  = 2 × 8 = 16. Итак, s = 64 + 16 = 80.
   Последняя цифра, 4: n = 0, 4 × b  n  равно 4 × 8  0  = 4. Таким образом, s = 80 + 4 = 84. Итак, 124  8  = 84  10 
 
Цифра n Значение = Цифра * b n Промежуточная сумма
1 2 1 × 8 2 = 64 64
2 1 2 × 8 1 = 16 80
4 0 4 × 8 0 = 4 84

Алгоритм преобразования десятичного числа в другое основание

  1. Пусть n будет десятичным числом.
  2. Пусть m будет числом, изначально пустым, в которое мы конвертируем. Мы будем составлять его справа налево.
  3. Пусть b будет основанием числа, в которое мы конвертируем.
  4. Повторяйте, пока n не станет 0
    Разделите n на b , пусть результат будет d , а остаток будет r .
    Запишите остаток r как крайнюю левую цифру из b .
    Пусть d будет новым значением n .

Воспользуемся алгоритмом для преобразования 45 в двоичную форму.

Пусть n = 45.
Пусть b = 2.
Повторить
   45, деленное на b, составляет 45/2 = 22, остаток 1. Таким образом,  d = 22  и  r = 1 . Итак,  m = 1 , а новое  n  равно 22.
   22, деленное на b, составляет 22/2 = 11, остаток 0. Таким образом,  d = 11  и  r = 1 . Итак,  m = 01 , а новое  n  равно 11.
   11, разделенное на b, равно 11/2 = 5, остаток 1.Итак,  d = 5  и  r = 1 . Итак,  m = 101 , а новое  n  равно 5.
    Деление 5 на b дает 5/2 = 2 остатка 1. Таким образом,  d = 2  и  r = 1 . Итак,  m = 1101 , а новое  n  равно 2.
    2, деленное на b, составляет 2/2 = 1 остаток 0. Таким образом,  d = 1  и  r = 0 . Итак,  m = 01101 , а новое  n  равно 1.
    1, деленное на b, равно 1/2 = 0, остаток 1. Таким образом,  d = 0  и  r = 1 . Итак,  m = 101101 , а новое  n  равно 0.Итак, 45  10  = 101101  2 
 

Давайте воспользуемся им для преобразования 99 в двоичную форму.

Пусть n = 99.
Пусть b = 2.
Повторить
   99, деленное на b, составляет 99/2 = 49 остаток 1. Таким образом,  d = 49  и  r = 1 . Итак,  m = 1 , а новое  n  равно 49.
   49, деленное на b, составляет 49/2 = 24 остатка 1. Таким образом,  d = 24  и  r = 1 . Итак,  m = 11 , а новое  n  равно 24.
   24 делить на b равно 24/2 = 12, остаток 0.Итак,  d = 12  и  r = 0 . Итак,  m = 011 , а новое  n  равно 12.
   12, деленное на b, составляет 12/2 = 6 остаток 0. Таким образом,  d = 6  и  r = 0 . Итак,  m = 0011 , а новое  n  равно 6.
    6, деленное на b, составляет 6/2 = 3 остатка 0. Таким образом,  d = 3  и  r = 0 . Итак,  m = 00011 , а новое  n  равно 3.
    3, деленное на b, составляет 3/2 = 1 остаток 1. Таким образом,  d = 1  и  r = 1 . Итак,  m = 100011 , а новое  n  равно 1.1, деленная на b, составляет 1/2 = 0 остаток 1. Таким образом,  d = 0  и  r = 1 . Таким образом,  m = 1100011 , а новый  n  равен 0. Итак, 99  10  = 1100011  2 

 

Давайте воспользуемся им, чтобы преобразовать 45 в шестнадцатеричное.

Пусть n = 45.
Пусть b = 16.
Повторить
   45, деленное на b, составляет 45/16 = 2 остатка 13. Таким образом,  d = 2  и  r = 13 . Итак,  m = D , а новое  n  равно 2.
    2, деленное на b, равно 2/16 = 0, остаток 2.Итак,  d = 0  и  r = 2 . Итак,  m = 2D , а новый  n  равен 0. Итак, 45  10  = 2D  16 .
 

Давайте воспользуемся им для преобразования 99 в шестнадцатеричное.

Пусть n = 99.
Пусть b = 16.
Повторить
   99, деленное на b, дает 99/16 = 6 остаток 3. Таким образом,  d = 6  и  r = 3 . Итак,  m = 3 , а новое  n  равно 6.
    6, деленное на b, составляет 6/16 = 0 остаток 6. Таким образом,  d = 0  и  r = 6 .Таким образом,  m = 63 , а новое значение  n  равно 0. Итак, 99  10  равно 63  16 .
 

Упражнения в классе

  1. Преобразуйте следующие числа в десятичную систему.
    1. Двоичное число 111.
    2. Двоичное число 1011.
    3. Двоичное число 1011 1011.
    4. Шестнадцатеричное число 61.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *