Разъемы материнской платы, различия PCI разъемов
Разъемы материнской платы. Их различия и названия.
Какие разъемы бывают на материнской плате и для чего они предназначены. Про это вы узнаете в данной статье.
Разъем для установки процессора или сокет
Разъем для установки процессора – это большой разъем в форме прямоугольника. Как правило, данный разъем находится в верхней части платы.
Разъемы бывают различных типов. Для того чтобы установить процессор на материнскую плату, он должен быть совместим с разъемом на плате.
Бывают случаи, когда тип разъема процессора и платы совпадает, но плата не поддерживает эту модель процессора. В результате такая связка материнской платы и процессора не будет работать.
разъем для процессора или сокет
Современные процессоры от Intel используют такие типы разъемов:
- Socket 1150
- Socket 1155
- Socket 1356
- Socket 1366
- Socket 2011
Современные процессоры от AMD используют такие типы разъемов:
- Socket AM3
- Socket AM3+
- Socket FM1
- Socket FM2
Разъемы для установки оперативной памяти или слоты
Разъемы для установки оперативной памяти – это длинные вертикальные разъемы размещенные справа или по обе стороны от процессора. Современные разъемы для оперативной памяти на материнской плате относятся к типу DDR3.
Разъемы оперативной памяти
На более старых моделях материнских плат могут использоваться разъемы DDR2 или DDR1. Все эти типы не совместимы друг с другом. Поэтому установить DDR3 в разъем для DDR2 не получится.
Разъемы PCI Express
Разъемы PCI Express – это разъемы на материнской плате, которые предназначены для установки дополнительных плат. Эти разъемы расположены в нижней части материнской платы.
Разъемы PCI EXPRESS
Разъем PCI Express может быть нескольких типов: PCI Express x1, PCI Express x4 и PCI Express x16. В большинстве случаев, разъем PCI Express x16 используется для установки видеокарт, а остальные слоты для установки других плат расширения, например звуковых карт.
Существует три версии PCI Express. Это PCI Express 1.0, PCI Express 2.0 и PCI Express 3.0. Все эти версии полностью совместимы. Это позволяет устанавливать новые устройства с поддержкой PCI Express 3.0 в старые материнские платы с PCI Express 1.0. Единственное ограничение это скорость передачи данных. При установке нового устройства в старую версию PCI Express устройство будет работать на скорости старой версии PCI Express.
Разъем PCI
Разъем PCI – это старый разъем для подключения плат расширения. Сейчас он практически не используется и устанавливается только в некоторые материнские платы.
Разъем PCI
Разъем PCI можно найти в нижней части материнской платы, рядом с разъемами PCI Express.
Разъемы SATA
Разъемы SATA это разъемы, предназначенные для подключения жестких дисков, SSD накопителей и дисководов.
Разъемы SATA
Эти разъемы размещены в нижней части материнской платы и в большинстве случаев окрашены в красный цвет.
Существует три версии SATA, это SATA 1.0, SATA 2.0 и SATA 3.0. Все эти версии полностью совместимы и отличаются только скоростью передачи данных. Для SATA 1.0 скорость составляет 1.5 Гбит/с, для SATA 2.0 – 3 Гбит/с, а для SATA 3.0 – 6 Гбит/с.
Разъем питания материнской платы
Разъем для подключения питания материнской платы размещается справа от оперативной памяти. Он может состоять из 20, 24 или 28 контактов.
Разъем питания материнской платы
В этот разъем нужно подключить питание от блока питания.
Вконтакте
Одноклассники
Мой мир
xn—-8sbapcreae3aehgq2acbblimc8q.xn--80adxhks
Разъемы на материнской плате
Материнская плата это главная плата в компьютере. К ней подключаются все компоненты компьютера, и она обеспечивает их взаимодействие и слаженную работу.Для того чтобы собрать компьютер с нуля или выполнить простой апгрейд, необходимо иметь базовые знания об устройстве материнской платы. В данном материале мы расскажем о разъемах на материнской плате.
Разъем для установки процессора или сокет
Разъем для установки процессора – это большой разъем в форме прямоугольника. Как правило, данный разъем находится в верхней части платы.
Разъемы бывают различных типов. Для того чтобы установить процессор на материнскую плату, он должен быть совместим с разъемом на плате.
Кроме этого материнская плата должна поддерживать данную модель процессора. Бывают случаи, когда тип разъема процессора и платы совпадает, но плата не поддерживает эту модель процессора. В результате такая связка материнской платы и процессора не будет работать.
Современные процессоры от Intel используют такие типы разъемов:
- Socket 1150
- Socket 1155
- Socket 1356
- Socket 1366
- Socket 2011
Современные процессоры от AMD используют такие типы разъемов:
- Socket AM3
- Socket AM3+
- Socket FM1
- Socket FM2
Разъемы для установки оперативной памяти или слоты
Разъемы для установки оперативной памяти – это длинные вертикальные разъемы размещенные справа или по обе стороны от процессора. Современные разъемы для оперативной памяти на материнской плате относятся к типу DDR3.
На более старых моделях материнских плат могут использоваться разъемы DDR2 или DDR1. Все эти типы не совместимы друг с другом. Поэтому установить DDR3 в разъем для DDR2 не получится.
Разъемы PCI Express
Разъемы PCI Express – это разъемы на материнской плате, которые предназначены для установки дополнительных плат. Эти разъемы расположены в нижней части материнской платы.
Разъем PCI Express может быть нескольких типов: PCI Express x1, PCI Express x4 и PCI Express x16. В большинстве случаев, разъем PCI Express x16 используется для установки видеокарт, а остальные слоты для установки других плат расширения, например звуковых карт.
Существует три версии PCI Express. Это PCI Express 1.0, PCI Express 2.0 и PCI Express 3.0. Все эти версии полностью совместимы. Это позволяет устанавливать новые устройства с поддержкой PCI Express 3.0 в старые материнские платы с PCI Express 1.0. Единственное ограничение это скорость передачи данных. При установке нового устройства в старую версию PCI Express устройство будет работать на скорости старой версии PCI Express.
Разъем PCI
Разъем PCI – это старый разъем для подключения плат расширения. Сейчас он практически не используется и устанавливается только в некоторые материнские платы.
Разъем PCI можно найти в нижней части материнской платы, рядом с разъемами PCI Express.
Разъемы SATA
Разъемы SATA это разъемы, предназначенные для подключения жестких дисков, SSD накопителей и дисководов.
Эти разъемы размещены в нижней части материнской платы и в большинстве случаев окрашены в красный цвет.
Существует три версии SATA, это SATA 1.0, SATA 2.0 и SATA 3.0. Все эти версии полностью совместимы и отличаются только скоростью передачи данных. Для SATA 1.0 скорость составляет 1.5 Гбит/с, для SATA 2.0 – 3 Гбит/с, а для SATA 3.0 – 6 Гбит/с.
Разъем питания материнской платы
Разъем для подключения питания материнской платы размещается справа от оперативной памяти. Он может состоять из 20, 24 или 28 контактов.
В этот разъем нужно подключить питание от блока питания.
comp-security.net
PCI-Express — шина, слот расширения. Типы разъёмов, скорость передачи данных и версии.
PCI—Express (PCIe, PCI—E) – последовательная, универсальная шина впервые обнародованная 22 июля 2002 года.
Является общей, объединяющей шиной для всех узлов системной платы, в которой соседствуют все подключённые к ней устройства. Пришла на замену устаревающей шине
Шина выступает как коммутатор, просто направляя сигнал из одной точки в другую не изменяя его. Это позволяет без явных потерь скорости, с минимальными изменениями и ошибками передать и получить сигнал.
Данные по шине идут симплексно (полный дуплекс), то есть одновременно в обе стороны с одинаковой скоростью, причём сигнал по линиям, течёт непрерывно, даже при отключении устройства (как постоянный ток, или битовый сигнал из нулей).
Синхронизация построена избыточным методом. То есть вместо 8 бит информации, передаётся 10 бит, два из которых являются служебными
(20%) и в определённой последовательности служат маячками для синхронизации тактовых генераторов или выявления ошибок. Поэтому, заявленная скорость для одной линии в 2.5 Гбитс, на самом деле равна примерно 2.0 Гбитс реальных.Питание каждого устройства по шине, подбирается отдельно и регулируется с помощью технологии ASPM (Active State Power Management). Она позволяет при простое (без подачи сигнала) устройства занижать его тактовый генератор и переводить шину в режим пониженного энергопотребления. Если сигнал не поступал в течение нескольких микросекунд, устройство считается неактивным и переводится в режим ожидания (время зависит от типа устройства).
Скоростные характеристики в двух направлениях PCI—Express 1.0
1x PCI—E ~ 500 Мбс
4х PCI—E ~ 2 Гбс
8x PCI—E ~ 4 Гбс
16х PCI—E ~ 8 Гбс
32х PCI-E ~ 16 Гбс
*Скорость передачи данных в одном направлении в 2 раза ниже данных показателей
15 января 2007 года, PCI—SIG выпустила обновлённую спецификацию именуемую PCI-Express 2.0
Основным улучшением стала в 2 раза увеличенная скорость передачи данных (5.0 Ггц, против 2.5Ггц в старой версии). Усовершенствованию подвергся также двухточечный протокол передачи данных (точка-точка), доработана программная составляющая и добавлена система программного мониторинга за скоростью шины. При этом сохранилась совместимость с версиями протокола PCI—E 1.х
В новой версии стандарта (PCI—Express 3.0), главным нововведением будет измененная система кодирования и синхронизации. Вместо 10 битной системы (8 бит информации, 2 бита служебных), будет применяться 130 битная (128 бит информации, 2 бита служебных). Это позволит снизить потери в скорости с 20% до ~1.5%. Будет также переработан алгоритм синхронизации передатчика и приёмника, улучшен PLL (phase-locked loop). Скорость передачи увеличится предположительно в 2 раза (в сравнении с PCI—E 2.0), при этом сохранится совместимость с прошлыми версиями PCI—Express.
www.xtechx.ru
Шина PCI — Цоколевка разъемов
Шина PCI является высокопроизводительная шина для соединения чипов, плат расширения и процессора / памяти подсистем.
Универсальные карты PCI 32/64 бит -------------------------------------------------- -------------- | PCI стороны компонентов (сторона B) | | | | | | Дополнительные | | ____ Обязательное 32-разрядных контактов 64-разрядных контактов _____ | | ___ | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | - | | | | | | | | | | | | | | ^ ^ ^ ^ ^ ^ ^ ^ B01 B11 B14 B49 B52 B62 B63 B94
5V PCI Card 32/64 бит | Дополнительные | | ____ Обязательное 32-разрядных контактов 64-разрядных контактов _____ | | ___ | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | - | | | | | | | | | | | | | |
3,3-вольтовой карты PCI 32/64 бит | Дополнительные | | ____ Обязательное 32-разрядных контактов 64-разрядных контактов _____ | | ___ | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | |
Спецификация PCI определяет два типа разъемов, которые могут быть реализованы на уровне системной плате: один для систем, которые реализуют 5 Вольт сигнализации уровня, и один для системы, которые реализуют 3,3 Вольт сигнализации уровней. Кроме того, PCI системы могут осуществлять либо 32-разрядный или 64-разрядный разъем. Большинство PCI автобусов осуществлять только 32-битную часть разъема, который состоит из контакты с 1 по 62. Современные системы, которые поддерживают 64-разрядную передачу данных осуществлять полный автобус PCI разъем, который состоит из контакты с 1 по 94. Три типа карт расширения могут быть реализованы: 5 Вольт Дополнительные платы включать в себя ключ выемку в контактный позициях 50 и 51, чтобы позволить им быть подключены только на 5 Вольт разъемов системы. 3,3 Вольт Дополнительные платы включать в себя ключ выемку в контактный позициях 12 и 13, чтобы они могли быть включены только в 3,3 Вольт разъемов системы. Универсальный карт расширения включают в себя как ключевые вырезы, чтобы они могли быть подключены к либо 5 В или 3,3 В разъемов системы.
Универсальная шина PCI Pinouts
Задняя Компьютер: ------: ------:-12V | - B1 A1 - | испытаний Сброс испытаний Часы | - B2 A2 - | +12 В Земля | - B3 A3 - | выбор режима тестовых данных Выход | - B4 A4 - | Ввод данных испытаний +5 V | - B5 A5 - | +5 V +5 V | - B6 A6 - | Прерывание Прерывание B | - B7 A7 - | C прерывания прерывания D | - B8 A8 - | +5 V PRSNT1 # | - B9 A9 - | Резервный Резервный | - B10 A10 - | + VI / O PRSNT2 # | - B11 A11 - | Reserved: ------: ------ :: ----- -: ------: Reserved | - B14 A14 - | Зарезервировано Первый | - B15 A15 - | Сброс Часы | - B16 A16 - | + VI / O Первый | - B17 A17 - | удовлетворить просьбу | - B18 A18 - | земля + VI / O | - B19 A19 - | защищены Адрес 31 | - B20 A20 - | Адрес Адрес 30 29 | - B21 A21 - | 3,3 В Земля | - B22 A22 - | Адрес Адрес 28 27 | - B23 A23 - | Адрес Адрес 26 25 | - B24 A24 - | Первый +3,3 | - B25 A25 - | Адрес 24 C / BE 3 | - B26 A26 - | Init устройство Выберите Адрес 23 | - B27 A27 - | 3,3 В Земля | - B28 A28 - | Адрес 22 Адрес 21 | - B29 A29 - | Адрес 20 Адрес 19 | - B30 A30 - | Первый +3,3 | - B31 A31 - | Адрес 18 Адрес 17 | - B32 A32 - | Адрес 16 C / BE 2 | - B33 A33 - | 3,3 В Земля | - B34 A34 - | периода кадра Инициатор Готовые | - B35 A35 - | Первый +3,3 | - B36 A36 - | Цель устройство Выберите Готово | - B37 A37 - | Заземление | - B38 A38 - | Остановить замок | - B39 A39 - | +3,3 Ошибка четности | - B40 A40 - | Snoop урон +3,3 | - B41 A41 - | Snoop Backoff Системная ошибка | - B42 A42 - | Первый +3,3 | - B43 A43 - | PAR C / BE 1 | - B44 A44 - | Адрес 15 Адрес 14 | - B45 A45 - | +3,3 M66EN/Ground | - B46 A46 - | Адрес 13 Адрес 12 | - B47 A47 - | 11 Адрес Адрес 10 | - B48 A48 - | Заземление | - B49 A49 - | 9 Адрес: ------: ------ :: ------: ------: Адрес 8 | - B52 A52 - | C / BE 0 Адрес 7 | - B53 A53 - | 3,3 V 3,3 V | - B54 A54 - | Адрес 6 Адрес 5 | - B55 A55 - | Адрес 4 Адрес 3 | - B56 A56 - | цокольный Первый | - B57 A57 - | Адрес 2 Адрес 1 | - B58 A58 - | 0 +5 адрес I / O | - B59 A59 - | + VI / O подтверждения 64-битных | - B60 A60 - | Запрос 64-разрядных +5 V | - B61 A61 - | +5 V +5 V | - B62 A62 - | +5 V: ------: ------ :: ------: ------: Reserved | - B63 A63 - | Заземление | - B64 A64 - | C / BE 7 C / BE 6 | - B65 A65 - | C / BE 5 C / BE 4 | - B66 A66 - | + VI / O Первый | - B67 A67 - | четности 64-битное адресное 63 | - B68 A68 - | Адрес 62 Адрес 61 | - B69 A69 - | земля + VI / O | - B70 A70 - | Адрес 60 Адрес 59 | - B71 A71 - | Адрес Адрес 58 57 | - B72 A72 - | Заземление | - B73 A73 - | Адрес Адрес 56 55 | - B74 A74 - | Адрес 54 Адрес 53 | - B75 A75 - | + VI / O Первый | - B76 A76 - | Адрес 52 Адрес 51 | - B77 A77 - | Адрес 50 Адрес 49 | - B78 A78 - | земля + VI / O | - B79 A79 - | Адрес 48 Адрес 47 | - B80 A80 - | Адрес 46 Адрес 45 | - B81 A81 - | Заземление | - B82 A82 - | Адрес Адрес 44 43 | - B83 A83 - | 42 адресов Адрес 41 | - B84 A84 - | + VI / O Первый | - B85 A85 - | Адрес Адрес 40 39 | - B86 A86 - | Адрес 38 Адрес 37 | - B87 A87 - | земля + VI / O | - B88 A88 - | Адрес 36 Адрес 35 | - B89 A89 - | Адрес 34 Адрес 33 | - B90 A90 - | Заземление | - B91 A91 - | 32 Адрес защищены | - B92 A92 - | Резервный Резервный | - B93 A93 - | Заземление | - B94 A94 - | Reserved: ------: ------:
То же самое с описаниями:
+5 VB21
Прикрепите | +5 V | 3,3 V | Универсальный | Описание |
---|---|---|---|---|
A1 | TRST | Сброс логику теста | ||
A2 | +12 V | +12 В постоянного тока | ||
A3 | TMS | Проверьте Mde Выбрать | ||
A4 | TDI | Входные данные испытаний | ||
A5 | +5 V | +5 В постоянного тока | ||
A6 | ИНТА | Прерывание | ||
A7 | INTC | Прерывание C | ||
A8 | +5 V | +5 В постоянного тока | ||
A9 | RESV01 | Зарезервированные VDC | ||
A10 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A11 | RESV03 | Зарезервированные VDC | ||
A12 | GND03 | (ОТКРЫТО) | (ОТКРЫТО) | Массу или обрыв (Key) |
A13 | GND05 | (ОТКРЫТО) | (ОТКРЫТО) | Массу или обрыв (Key) |
A14 | RESV05 | Зарезервированные VDC | ||
A15 | Сброс | Сброс | ||
A16 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A17 | GNT | Грант PCI использования | ||
A18 | GND08 | Земля | ||
A19 | RESV06 | Зарезервированные VDC | ||
A20 | AD30 | Адреса / данных 30 | ||
A21 | 3,3 V01 | 3,3 В постоянного тока | ||
A22 | AD28 | Адреса / данных 28 | ||
A23 | AD26 | Адреса / данных 26 | ||
A24 | GND10 | Земля | ||
A25 | AD24 | Адреса / данных 24 | ||
A26 | IDSEL | Инициализации устройство Выберите | ||
A27 | 3,3 V03 | 3,3 В постоянного тока | ||
A28 | AD22 | Адреса / данных 22 | ||
A29 | AD20 | Адреса / данных 20 | ||
A30 | GND12 | Земля | ||
A31 | AD18 | Адреса / данных 18 | ||
A32 | AD16 | Адреса / данных 16 | ||
А33 | 3,3 V05 | 3,3 В постоянного тока | ||
A34 | КАДР | Адрес или фазы данных | ||
A35 | GND14 | Земля | ||
A36 | TRDY | Целевые Готово | ||
A37 | GND15 | Земля | ||
A38 | СТОП | Прервать цикл | ||
A39 | 3,3 V07 | 3,3 В постоянного тока | ||
A40 | SDONE | Snoop урон | ||
A41 | SBO | Snoop Backoff | ||
A42 | GND17 | Земля | ||
A43 | PAR | Паритет | ||
A44 | AD15 | Адреса / данных 15 | ||
A45 | 3,3 V10 | 3,3 В постоянного тока | ||
A46 | AD13 | Адреса / данных 13 | ||
A47 | AD11 | Адреса / данных 11 | ||
A48 | GND19 | Земля | ||
A49 | AD9 | Адреса / данных 9 | ||
A52 | C/BE0 | Командование, разрешение байта 0 | ||
A53 | 3,3 V11 | 3,3 В постоянного тока | ||
A54 | AD6 | Адреса / данных 6 | ||
A55 | AD4 | Адреса / данных 4 | ||
A56 | GND21 | Земля | ||
A57 | AD2 | Адрес / Данные 2 | ||
A58 | AD0 | Адрес / Данные 0 | ||
A59 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A60 | REQ64 | Запрос 64 бит?? | ||
A61 | VCC11 | +5 В постоянного тока | ||
A62 | VCC13 | +5 В постоянного тока | ||
A63 | GND | Земля | ||
A64 | C / BE [7] # | Командование, разрешение байта 7 | ||
A65 | C / BE [5] # | Командование, разрешение байта 5 | ||
A66 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A67 | PAR64 | Паритет 64?? | ||
A68 | Ad62 | Адреса / данных 62 | ||
A69 | GND | Земля | ||
A70 | AD60 | Адреса / данных 60 | ||
A71 | AD58 | Адреса / данных 58 | ||
A72 | GND | Земля | ||
A73 | AD56 | Адреса / данных 56 | ||
A74 | AD54 | Адреса / данных 54 | ||
A75 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A76 | AD52 | Адреса / данных 52 | ||
A77 | AD50 | Адреса / данных 50 | ||
A78 | GND | Земля | ||
A79 | AD48 | Адреса / данных 48 | ||
A80 | AD46 | Адреса / данных 46 | ||
A81 | GND | Земля | ||
A82 | AD44 | Адреса / данных 44 | ||
A83 | AD42 | Адреса / данных 42 | ||
A84 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
A85 | AD40 | Адреса / данных 40 | ||
A86 | AD38 | Адреса / данных 38 | ||
A87 | GND | Земля | ||
A88 | AD36 | Адреса / данных 36 | ||
A89 | AD34 | Адреса / данных 34 | ||
A90 | GND | Земля | ||
A91 | AD32 | Адреса / данных 32 | ||
A92 | RES | Зарезервированный | ||
A93 | GND | Земля | ||
A94 | RES | Зарезервированный | ||
B1 | -12V | -12 В постоянного тока | ||
B2 | TCK | Синхросигнал тестирования | ||
B3 | GND | Земля | ||
B4 | TDO | Выходные данные испытаний | ||
B5 | +5 V | +5 В постоянного тока | ||
B6 | +5 V | +5 В постоянного тока | ||
B7 | INTB | Прерывание B | ||
B8 | INTD | Прерывание D | ||
B9 | PRSNT1 | Зарезервированный | ||
B10 | RES | + VI / O (+5 В или 3,3 В) | ||
B11 | PRSNT2 | ? | ||
B12 | GND | (ОТКРЫТО) | (ОТКРЫТО) | Массу или обрыв (Key) |
B13 | GND | (ОТКРЫТО) | (ОТКРЫТО) | Массу или обрыв (Key) |
B14 | RES | Зарезервированные VDC | ||
B15 | GND | Сброс | ||
B16 | CLK | Часы | ||
B17 | GND | Земля | ||
B18 | REQ | Запрос | ||
B19 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
B20 | АД31 | Адреса / данных 31 | ||
B21 | AD29 | Адреса / данных 29 | ||
B22 | GND | Земля | ||
B23 | AD27 | Адреса / данных 27 | ||
B24 | AD25 | Адреса / данных 25 | ||
B25 | 3,3 V | 3,3 В постоянного тока | ||
B26 | C/BE3 | Командование, разрешение байта 3 | ||
B27 | AD23 | Адреса / данных 23 | ||
B28 | GND | Земля | ||
B29 | AD21 | Адреса / данных 21 | ||
B30 | AD19 | Адреса / данных 19 | ||
B31 | 3,3 V | 3,3 В постоянного тока | ||
B32 | AD17 | Адреса / данных 17 | ||
B33 | C/BE2 | Командование, разрешение байта 2 | ||
B34 | GND13 | Земля | ||
B35 | IRDY | Инициатор Готово | ||
B36 | 3,3 V06 | 3,3 В постоянного тока | ||
B37 | DEVSEL | Устройство Выберите | ||
B38 | GND16 | Земля | ||
B39 | Блокировки | Блокировка автобуса | ||
B40 | PERR | Ошибка четности | ||
B41 | 3,3 V08 | 3,3 В постоянного тока | ||
B42 | SERR | Системная ошибка | ||
B43 | 3,3 V09 | 3,3 В постоянного тока | ||
B44 | C/BE1 | Команда, Byte Enable 1 | ||
B45 | AD14 | Адреса / данных 14 | ||
B46 | GND18 | Земля | ||
B47 | AD12 | Адреса / данных 12 | ||
B48 | AD10 | Адреса / данных 10 | ||
B49 | GND20 | Первый запрос или 66 МГц шины | ||
B50 | (ОТКРЫТО) | GND | (ОТКРЫТО) | Массу или обрыв (Key) |
B51 | (ОТКРЫТО) | GND | (ОТКРЫТО) | Массу или обрыв (Key) |
B52 | AD8 | Адреса / данных 8 | ||
B53 | AD7 | Адреса / данных 7 | ||
B54 | 3,3 V12 | 3,3 В постоянного тока | ||
B55 | AD5 | Адреса / данных 5 | ||
B56 | AD3 | Адрес / данные 3 | ||
B57 | GND22 | Земля | ||
B58 | AD1 | Адрес / Данные 1 | ||
B59 | VCC08 | +5 В постоянного тока | ||
B60 | ACK64 | Подтверждение 64 бит?? | ||
B61 | VCC10 | +5 В постоянного тока | ||
B62 | VCC12 | +5 В постоянного тока | ||
B63 | RES | Зарезервированный | ||
B64 | GND | Земля | ||
B65 | C / BE [6] # | Командование, разрешение байта 6 | ||
B66 | C / BE [4] # | Командование, разрешение байта 4 | ||
B67 | GND | Земля | ||
B68 | AD63 | Адреса / данных 63 | ||
B69 | AD61 | Адреса / данных 61 | ||
B70 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
B71 | AD59 | Адреса / данных 59 | ||
B72 | AD57 | Адреса / данных 57 | ||
B73 | GND | Земля | ||
B74 | AD55 | Адреса / данных 55 | ||
B75 | AD53 | Адреса / данных 53 | ||
B76 | GND | Земля | ||
B77 | AD51 | Адреса / данных 51 | ||
B78 | AD49 | Адреса / данных 49 | ||
B79 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
B80 | AD47 | Адреса / данных 47 | ||
B81 | AD45 | Адреса / данных 45 | ||
B82 | GND | Земля | ||
B83 | AD43 | Адреса / данных 43 | ||
B84 | AD41 | Адреса / данных 41 | ||
B85 | GND | Земля | ||
B86 | AD39 | Адреса / данных 39 | ||
B87 | AD37 | Адреса / данных 37 | ||
B88 | +5 V | 3,3 V | Сигнал Железнодорожный | + VI / O (+5 В или 3,3 В) |
B89 | Ad35 | Адреса / данных 35 | ||
B90 | AD33 | Адреса / данных 33 | ||
B91 | GND | Земля | ||
B92 | RES | Зарезервированный | ||
B93 | RES | Зарезервированный | ||
B94 | GND | Земля |
Примечания: Pin 63-94 существует только на реализацию 64 бит PCI.
+ VI / O 3,3 В на 3,3 доски, на досках 5V 5V, и определить сигнал рельсы на универсальной плате.
PCI является синхронным архитектура шины со всеми передача данных выполняется относительно системного тактового (CLK). Начальной спецификации PCI разрешен максимальной тактовой частотой 33 МГц позволяет одной шине передачи должны выполняться каждые 30 наносекунд. Позже, версия 2.1 спецификации PCI продлила автобус определение для обеспечения работы на частоте 66 МГц, но подавляющее большинство сегодняшних персональных компьютеров продолжают осуществлять Шина PCI, который работает на максимальной скорости 33 МГц.
PCI реализует 32-битный мультиплексированных адреса и шины данных (AD [31:0]). ИТ-архитекторов, средства поддержки 64-битной шиной данных через гнездо разъема больше, но большинство сегодняшних персональных компьютеров поддерживают только 32-разрядная передача данных через базу 32-разрядных разъема PCI. С частотой 33 МГц, 32-разрядный слот поддерживает максимальную скорость передачи данных 132 МБ / с, и 64-разрядный слот поддерживает 264 Мбайт / сек.
Мультиплексированных адреса и шины данных позволяет пониженным количеством контактов на разъеме PCI, что позволяет снизить стоимость и меньший размер пакета для компонентов PCI. Типичный 32-битных PCI карты расширения использовать только около 50 сигналов контактов на разъеме PCI из которых 32 являются мультиплексированных адреса и шины данных. Циклы шины PCI инициируются вождения адрес на AD [31:0] сигналы в течение первых часов краю называют адрес фазу. Адрес фаза сигнализирует активацию сигнального кадра #. На следующий фронт тактового сигнала начинается первый из одного или более данных фаз в котором данные передаются на AD [31:0] сигналами.
В PCI терминологии, данные передаются между инициатором которых является мастером шины, и цель, которая является автобус рабом. Инициатором диски C / BE [3:0] # сигналов во время фазы адреса, чтобы сигнализировать тип передачи (чтение из памяти, запись в память, ввод / вывод, I / O записи и т.д.). Во время фазы данных C / BE [3:0] # сигналами служат байта позволяют указать, какой байт данных являются действительными. Как инициатором, так и адресат могут вставить состояния ожидания в передачу данных deasserting IRDY # и # TRDY сигналов. Действительно передачи данных происходят на каждом такте края, в котором обе IRDY # # TRDY и утверждаются.
Передачи PCI шины состоит из одной фазы адрес и любое количество данных фаз. Операции ввода / вывода, что доступ регистров в рамках цели PCI обычно имеют только одну фазу данных. Передача данных в память, которые перемещаются блоки данных состоят из нескольких фаз данных, прочитать или записать несколько последовательных ячеек памяти. Оба инициатора и целевой может прекратить последовательность трансфер в любое время. Инициатором сигнализирует завершение автобусный трансфер по deasserting кадр # сигнал во время последней фазы данных. Цель может прекратить автобусный трансфер, утверждая # СТОП сигнал. Когда инициатор обнаруживает активный СТОП # сигнал, он должен прервать текущую передачу автобуса и повторно запрашивать разрешение на автобусе, прежде чем продолжить. Если СТОП # утверждается без каких-либо данных фаз завершению, целевой выпустило повторить попытку. Если СТОП # утверждается после одной или нескольких фазах данных успешно завершена, целевой выпустило отключиться.
Инициаторы запрашивать разрешение на право собственности на автобусе, утверждая, REQ # сигнал на центральный арбитра. Собственности арбитром гранты из автобуса, утверждая GNT # сигнала. REQ # и GNT #, являются уникальными для каждого слота позволяет арбитром для реализации алгоритма автобуса справедливости. Арбитраж в PCI скрыта в том смысле, что она не потребляет тактов. Нынешний автобуса инициаторов перевода перекрываются с арбитражным процессом, который определяет следующий владелец автобуса.
PCI поддерживает строгий механизм автоматической конфигурации. Каждое PCI-устройство включает в себя набор регистров конфигурации, что позволяет идентифицировать тип устройства (SCSI, видео, Ethernet и т.д.), а также компании, которая производит его. Другие регистры позволяют конфигурации устройств адресов ввода / вывода, адреса памяти, уровни прерываний и т.д.
Хотя это и не широко применяется, PCI поддерживает 64-битную адресацию. . В отличие от 64-битной шиной данных вариант, который требует более длительного разъем с дополнительным 32-бит данных сигналов, 64-разрядной адресации могут быть поддержаны через базовый 32-разрядный разъем двойные адресные циклы выдаются в которых младшие 32 — битов адреса приводятся на AD [31:0] сигналами в течение первой фазы адрес и высокого порядка 32 битов адреса (если не ноль) приводятся в движение на AD [31:0] сигналы во время Второй этап адресу. Остаток перенос продолжается как обычный передачи шины.
PCI определяет поддержку как 5 вольт и 3,3 вольта сигнализации уровней. Разъем PCI определяет расположение выводов как для 5 вольт и 3,3 вольта уровнях. Однако большинство ранних систем PCI были только 5 вольт, и не обеспечивали активную мощность на 3,3 вольта контактный разъем. Со временем использование более 3,3 Вольт интерфейса ожидается, но карт расширения, которые должны работать в старых унаследованных систем ограничены использованием только 5 Вольт. Манипуляция схема реализуется в разъемы PCI Для предотвращения внесения плат расширения в системе с напряжением питания несовместимы.
Хотя наиболее широко применяются в PC совместимых систем, архитектура PCI шина процессора независимым. Определения PCI сигнала являются общими позволяет автобуса, которые будут использоваться в системах на основе других семействами процессоров.
PCI включает в себя строгим спецификациям для обеспечения качества сигнала, необходимые для работы на 33 и 66 МГц. Компоненты и карт расширения должна включать уникальный водителей автобусов, которые специально разработаны для использования в среде PCI шине. Типичными устройствами TTL использовались в предыдущих реализациях шины, например, ISA и EISA которые не соответствуют требованиям PCI. Это ограничение наряду с высокой скоростью шины подсказывает, что большинство устройств PCI реализованы как пользовательские ASICs.
Чем выше скорость PCI ограничивает количество слотов расширения на одной шине не более чем на 3 или 4, по сравнению с 6 или 7 для более ранних шинных архитектур. Чтобы разрешить расширение автобусов с более чем 3 или 4 слотами PCI SIG определила PCI к PCI Bridge механизма. PCI к PCI Мосты ASIC, который электрически выделить два PCI, позволяя автобусов автобусные трансферы, которые будут направлены из одного автобуса в другой. Каждый мост устройство имеет первичную шину PCI и вторичной шине PCI. Несколько устройств мост может быть каскадным, чтобы создать систему с большим количеством автобусов PCI.
В данном разделе в настоящее время базируется исключительно на работе Sokos Марк.
Этот файл не предназначено, чтобы быть полное покрытие стандартного PCI. Это только для информационных целей, и предназначен, чтобы дать дизайнерам и любителям обзор автобусе, так что они могли бы создавать свои собственные карты PCI. Таким образом, операции ввода / вывода объясняются в самых деталях, в то время как операции с памятью, которая, как правило, не будут рассматриваться на карты ввода / вывода, только кратко объяснил. Любители также предупредил, что, в связи с более высокими тактовыми частотами участвует, PCI карты более трудно разработать, чем карты или ISA карт для других, более медленных автобусов. Многие компании сейчас делают карт PCI прототипирования, а для тех, посчастливилось иметь доступ к FPGA программистов, такие компании, как Xilinx предлагают отвечающие требованиям PCI которую можно использовать в качестве отправной точки для собственных проектов.
Описание сигналов:
AD (х)
Адреса / данных линий.
CLK
Часы. 33 МГц максимум.
C / BE (х)
Командование, разрешение байта.
КАДР
Используется для указания того цикла фазы адреса или данные фазы.
DEVSEL
Выберите устройство.
IDSEL
Инициализации устройство Выберите
INT (х)
Прерывать
IRDY
Инициатор Готово
Блокировки
Используется для управления блокировок ресурсов на шине PCI.
M66EN
Первый, когда карта работает в 33 МГц. Подтянут, если карта запросы 66 МГц шину. Если все comonents (чипсета и других карт) может работать на частоте 66 МГц, то частота шины PCI будет в два раза быстрее, чем на обычной частоте. Определено, так как PCI 2.1 для 3,3 карты только.
REQ
Запрос. Просит перевод PCI.
GNT
Грант. указывает, что разрешение на использование PCI предоставляется.
PAR
Четности. Используется для AD0-31 и C/BE0-3.
PERR
Ошибка четности.
RST
Сброс.
SBO
Snoop отсрочки.
SDONE
Snoop урон.
SERR
Системная ошибка. Указывает на ошибку четности адрес для специальных циклов или системная ошибка.
СТОП
Утверждается Target. Просит мастер, чтобы остановить текущий цикл передачи.
TCK
Синхросигнал тестирования
TDI
Входные данные испытаний
TDO
Выходные данные испытаний
TMS
Выбор тест-режима
TRDY
Целевые Готово
TRST
Сброс логику теста
Шина PCI лечит все трансферы как прорвало операции. Каждый цикл начинается с адресом фазой с последующей одной или более данных фаз. Данные фазы могут повторяться бесконечно, но ограничены таймер, который определяет максимальное количество времени, что устройство PCI может управлять шиной. Этот таймер установлен на процессор, как часть конфигурации пространства. Каждое устройство имеет свой таймер (см. Задержка таймера в конфигурационном пространстве).
То же линии используются для адресов и данных. Командных строк также используются для линий разрешение байта. Это сделано, чтобы уменьшить общее количество контактов разъема PCI.
Командная строка (C/BE3 к C/BE0) указывают на тип автобусный трансфер в течение фазы адреса.
C / BE | Тип команды |
---|---|
0000 | Подтверждение о прерывании |
0001 | Специальный цикл |
0010 | Ввод / вывод |
0011 | I / O Написать |
0100 | зарезервированный |
0101 | зарезервированный |
0110 | Чтение из памяти |
0111 | Запись в память |
1000 | зарезервированный |
1001 | зарезервированный |
1010 | Чтения конфигурации |
1011 | Записи конфигурации |
1100 | Несколько чтение из памяти |
1101 | Двойной цикл адреса |
1110 | Memory-читаться строка |
1111 | Запись в память и отменить |
Три основных типа трансферы ввода / вывода, память и конфигурация.
Диаграммы PCI времени:
__________________ CLK ___ | | ___ | | ___ | | ___ | | ___ | | ___ | | ___ ________________ Рамки | _________________________________ | _______________________________ AD ------- --- Адрес Data1 Data2 Data3 Data4 _____________________________________ C / BE ------- --- Командного байта сигналы разрешения _______________ IRDY | _________________________________ | ________________ TRDY | ________________________________ | _________________ DEVSEL | _______________________________ |
Не PCI цикла передачи, 4 Данные фазы, отсутствие состояния ожидания. Данные передаются по переднему фронту CLK.
[1] [2] [3] ________________________ CLK ___ | | ___ | | ___ | | ___ | | ___ | | ___ | | ___ | | ___ | | __ ________________ Рамки | ________________________________________________ | Азбука _______________________________________ AD ------- --------- --- Адрес Data1 Data2 Data3 ____________________________________________________ C / BE ------- --- Командного байта сигналы разрешения Ждать ____________________ IRDY | __________________________________ | | _______ | Стой, стой, _______________________________ TRDY | _______ | | _______________________ | _________________ DEVSEL | ______________________________________________ |
PCI цикла передачи, с состояниями ожидания. Данные передаются по переднему фронту CLK в точках обозначенный A, B и C.
Циклов шины:
Подтверждения прерывания (0000)
Контроллер прерываний автоматически распознает и реагирует на ИНТА (подтверждения прерывания) команды. В фазе данных, он передает вектор прерывания на объявление линий.
Специальный цикл (0001)
AD15-AD0 | Описание |
---|---|
0x0000 | Процессор Shutdown |
0x0001 | Процессор Halt |
0x0002 | x86 определенный код |
0x0003 до 0xFFFF | Зарезервированный |
I / O Read (0010) и I / O Write (0011)
Устройство ввода / вывода операции чтения или записи. AD строки содержат адрес байта (AD0 и AD1 должны быть расшифрованы). PCI порты ввода / вывода может быть 8 или 16 бит. PCI позволяет 32 бита адресного пространства. На IBM совместимых машин, процессор Intel ограничена 16 битами пространство ввода / вывода, который дополнительно ограничена некоторыми картами ISA, которые также могут быть установлены на машине (много карт ISA декодировать только нижние 10 бита адресного пространства, а также Таким образом, зеркало себя во всем 16-битное пространство ввода / вывода). Этот предел предполагает, что устройство поддерживает ISA или EISA слоты в дополнение к PCI слотов.
Пространство PCI конфигурации можно получить также через порты ввода / вывода 0x0CF8 (адрес) и 0x0CFC (данные). Адрес порта должен быть записан первым.
Чтение из памяти (0110) и Memory Write (0111)
Чтения или записи в памяти системы. AD строк содержат двойное адресу. AD0 и AD1 не должны быть декодированы. Разрешение байта линии (C / BE) указать, какие байты являются действительными.
Чтения конфигурации (1010) и записи конфигурации (1011)
Чтения или записи в конфигурации PCI устройства пространство, которое составляет 256 байт. Доступ к нему осуществляется в двойном единиц. AD0 и AD1 содержать 0, AD2-7 содержать адрес двойного слова, AD8-10 используются для выбора адресуемого блока неисправность блока, а остальные линии AD не используются.
Адрес Бит 32 16 15 0 00 Unit ID | Производитель ID 04 статус | Команда Коду класса 08 | Редакция 0C БИСТ | Заголовок | Задержка | CLS 10-24 Базовый адрес Регистрация 28 Зарезервировано 2C Зарезервировано 30 Расширение ROM Базовый адрес 34 Зарезервировано 38 Зарезервировано 3C MaxLat | MnGNT | INT-контактный | RC-линии 40-FF для установки вдувания ПУТ
Несколько чтение памяти (1100)
Это расширение шины цикл чтения памяти. Он используется для чтения больших блоков памяти без кэширования, которое выгодно для длинных последовательного доступа к памяти.
Двойной цикл адреса (1101)
Два цикла адрес необходимы при 64 бит адреса используется, но только 32-битный физический адрес существует. Наименее значимый часть адреса размещен на линии AD первым, а затем наиболее значимые 32 бит. Второй цикл адрес также содержит команды для типа передачи (ввода / вывода, память и т.д.). Шина PCI поддерживает 64-битный адрес ввода / вывода пространстве, хотя это не доступно на ПК на базе Intel из-за ограничений процессора.
Memory-Read линия (1110)
Этот цикл используется для чтения в более чем двух блоков 32 бита данных, как правило, до конца строки кэша. Это более эффективно, чем обычная память читал всплесков в течение длительного ряда последовательных доступа к памяти.
Запись в память и отменить (1111)
Это означает, что, как минимум, одной строки кэша должны быть переданы. Это позволяет основной памяти быть обновлен, сохраняя кэш обратной записи цикла.
Источники: Внутри локальной шины PCI Гай У. Кендалл, Byte февраль 1994 г. В 19 р. 177-180
Источники: Незаменимый Книга оборудования ПК, Ханс-Петер Messmer, ISBN 0-201-8769-3
Для получения копии полного стандартного PCI, обращайтесь:
PCI Special Interest Group; (SIG)PO Box 14070
Портленд 97214
1-800-433-5177
1-503-797-4207
TD / п / п
raspinovca.ru
как подключить видеокарту, процессор, оперативную память, диски
Материнская плата является «телом» компьютера, и без нее не может существовать ни один системный блок. На материнской плате крепятся и к ней подключаются все комплектующие, из которых состоит системный блок. С точки зрения сборки компьютера подключение элементов к материнской плате не является чрезвычайно сложной задачей, но есть важные нюансы, на которые нужно обращаться внимание. В рамках данной статьи мы рассмотрим, какие основные разъемы имеются на материнской плате, что к ним подключать, в каких случаях они являются совместимыми, а в каких нет, а также другие вопросы.
Разъем для подключения процессора на материнской плате
Одним из главных компонентов и «сердцем» любого компьютера является центральный процессор. Без него запустить системный блок не получится, и его очень важно правильно установить. При выборе процессора нужно ориентироваться на то, какая материнская плата используется, или наоборот. Дело в том, что существует 9 современных стандартов разъемов процессора, имеющие различную распиновку или не совместимых друг с другом по другим причинам.
Процессор | Разъем | ||||
AMD | AM3 | AM3+ | FM1 | FM2 | |
Intel | 1150 | 1155 | 1356 | 1366 | 2011 |
Разъем для процессора обычно располагается в середине материнской платы. Его сложно не заметить – это большая прямоугольная площадка, которая имеет специальный механизм для крепления процессора.
Обратите внимание: Чаще всего вокруг разъема для процессора на материнской плате довольно «пустынно». Дело в том, что сверху на процессор устанавливается кулер для охлаждения «камня», который может быть весьма внушительных размеров.
Разъем для подключения видеокарты на материнской плате
Рекомендуем прочитать: Как подобрать видеокарту к материнской плате и процессору
Следующий разъем на материнской плате, который наверняка потребуется при сборке компьютера, это разъем для подключения видеокарты. Некоторое время назад для подключения видеокарты в материнской плате использовалось два типа разъема – AGP и PCI Express. На сегодняшний день все видеокарты подключаются к разъему PCI Express.
Чаще всего разъем PCI Express располагается в левом нижнем углу материнской платы. Он может служить не только для подключения видеокарты, но также и для других устройств.
Важно: Разъем PCI Express может быть представлен в нескольких вариациях: PCI Express x1, PCI Express x4, PCI Express x16. Для подключения стандартной видеокарты служит последний из перечисленных разъемов. Другие разъемы могут не всегда присутствовать на современных материнских платах.
Разъем PCI Express X16 для подключения видеокарты может быть различных версий. По состоянию на 2017 год имеется 4 типа разъема PCI Express:
- PCI Express 1.0
- PCI Express 2.0
- PCI Express 3.0
- PCI Express 4.0
Данные разъемы отличаются друг от друга только пропускной способностью. При этом они являются обратносовместимыми.
Пример: Подключив в разъем PCI Express 3.0 устройство, предназначенное для PCI Express 2.0, оно, скорее всего, будет работать без нареканий. Но если сделать наоборот, то устройству, предназначенному для более высокого типа разъема, может не хватить пропускной способности для полного или частичного выполнения своих функций.
Стоит отметить: На некоторых материнских платах можно найти разъем PCI, расположенный неподалеку от PCI Express. Данный разъем сейчас практически не используется, но при необходимости в него могут быть установлены дополнительные элементы.
Разъем для подключения оперативной памяти на материнской плате
Рекомендуем прочитать: Как правильно установить оперативную память в компьютер?
Разъемы для подключения оперативной памяти чаще всего располагаются справа от процессора (иногда могут располагаться с двух сторон). Таких разъемов на современной материнской плате, как минимум, 4 штуки.
В настоящее время разъемы для подключения оперативной памяти относятся к протоколу DDR3. При этом раньше использовались DDR1 и DDR2, которые отставали от современного стандарта по пропускной способности. Совместимости у разъемов и устройств DDR1, DDR2 и DDR 3 нет. То есть, установить устройство DDR1 в разъем DDR3 не получится.
Стоит отметить: На современных материнских платах можно заметить, что несколько разъемов для подключения оперативной памяти выполнены в одном цвете, а несколько в другом. Связано это с тем, что разные каналы выделены разным цветом. Если у вас используется несколько планок оперативной памяти, лучше их все подключить в разъемы одного цвета.
Разъем для подключения жесткого диска на материнской плате
На материнской плате, чаще всего в нижней правой ее части, присутствует несколько разъемов для подключения жесткого диска. Эти разъемы называются SATA, и они бывают трех версий: SATA 1.0, SATA 2.0, SATA 3.0. Чаще всего данные разъемы выделены цветом, отличаясь ото всех других разъемов на материнской плате.
Все версии разъемов SATA являются обратносовместимыми, и их отличия – это скорость. Разъем SATA 3.0 является самым быстрым на данный момент, поэтому именно он используется во всех современных материнских платах.
Разъем питания материнской платы
В правой части материнской платы располагается еще один важный разъем, который служит для питания материнской платы. Обычно он состоит из 20 или 24 контактов и служит для подключения к нему провода от блока питания. Без питания материнской платы через данный разъем, она не будет работать.
Выше мы рассмотрели самые главные разъемы материнской платы, к которым подключаются основные комплектующие любого системного блока. На самом деле разъемов намного больше, некоторые из них служат для подключения кнопок с корпуса компьютера, другие для подключения разъемов с корпуса или дополнительного питания и так далее.
Рекомендуем прочитать: Передняя панель компьютера: как подключить кнопку питания, перезагрузки, разъемыЗагрузка…
okeygeek.ru
Разъемы слота PCI-Express
Опубликовано января 3, 2012 в Применение шины PCI-Express
Разъемы слота PCI-Express
Каждый разъем слота PCI-Express включает базовый набор служебных контактов и определенное количество одинаковых шин со скоростью передачи данных 0,5 Гбайт/с в каждом направлении.
Количество шин указано в названии стандарта и позволяет определить итоговую пропускную способность шины. Стандартный базовый разъем соединения x1 имеет один набор контактов и соответственно поддерживает пропускную способность шины 2,5 Гбит/с.
Базовый разъем предназначен для замены или дополнения разъемов шины PCI-Express. Разъем PCI-Express х16 предназначен для графических карт. Он пришел на смену графическому порту AGР.
Разъемы PCI-Express по ширине и форме подобны разъемам PCI и располагаются в тех же местах на системной плате. Условно разъем делится на две части. Через первую (она ближе к задней стенке корпуса) поступает питание, а вторая (ближе к чипсету и отделенная ключом) — интерфейсная часть.
Длина интерфейсной части разъемов PCI-Express варьируется в зависимости от количества линий соединения xl. небольшая плата х 16 сопоставима по размерам с обычным разъемом PCI или AGР.
Установить более быструю плату, например х4, в более медленный разъем, например x1, нельзя из-за различных размеров платы и разъема. Установка же медленной платы (например, x1) в разъем более быстрого соединения (х4, х8 или х16) возможна. При этом быстродействие платы будет соответствовать низшей скорости.
Платы PCI-Express сильно нагреваются. Потребляемая мощность разъема соединения x1 составляет 10 Вт, разъема х4 — 25 Вт, разъема x16 — 75 Вт. Для разгрузки цепей питания стандартом предусмотрена возможность установки на системную плату второго разъема питания. Наличие двух разъемов питания снижает локальный нагрев компонентов PCI-Express.
Таким образом, при использовании на системной плате устройств PCI-Express следует учесть, что стандартный 20-контактный разъем блока питания спецификации AТХ 2.01 вам не подойдет. Следует приобрести блок питания с дополнительной секцией питания из четырех контактов, которые усиливают линии питания +12 В, 5,0 В и +3,3 В. Мощность блока питания должна превышать 300 Вт.
Для улучшения теплового баланса в системном блоке и сохранения высоких скоростных показателей шины разработана спецификация PCI-Express External Cabling, предусматривающая внешнее подключение к системной плате таких энергоемких компонентов, как видеоплаты, жесткие диски и т.д.
Стандартизировано четыре разъема PCI-Express x1, х4 (38 выводов), х8 (68 выводов) и х16 (136 выводов). Длина кабеля составляет 10 м. Два 10-метровых кабеля можно соединить между собой с помощью усилителя, что увеличивает максимальную длину подключения в два раза.
dammlab.com
PCI Express 1x, 4x, 8x, 16x bus распиновка и описание @ pinouts.ru
PCI Express as a high-bandwidth, low pin count, serial, interconnect technology. It was designed to replace the older PCI and AGPbus standards. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism (Advanced Error Reporting, AER), and native hot-swap functionality. PCI Express architecture provides a high performance I/O infrastructure for Desktop Platforms with transfer rates starting at 2.5 Giga transfers per second over a x1 PCI Express lane for Gigabit Ethernet, TV Tuners, Firewire 1394a/b controllers, and general purpose I/O. PCI Express architecture provides a high performance graphics infrastructure for Desktop Platforms doubling the capability of existing AGP8x designs with transfer rates of 4.0 Gigabytes per second over a x16 PCI Express lane for graphics controllers. A lane is composed of two differential signaling pairs, with one pair for receiving data and the other for transmitting.
ExpressCard utilizing PCI Express interface, developed by the PCMCIA group for mobile computers. PCI Express Advanced Power Management features help to extend platform battery life and to enable users to work anywhere, without an AC power source. The PCI Express electrical interface is also used in some computer storage interfaces SATA Express and M.2.
The broad adoption of PCI Express in the mobile, enterprise and communication segments enables convergence through the re-use of a common interconnect technology.
PCI-E is a serial bus which uses two low-voltage differential LVDS pairs, at 2.5Gb/s in each direction [one transmit, and one receive pair]. PCI Express supports 1x [2.5Gbps], 2x, 4x, 8x, 12x, 16x, and 32x bus widths [transmit / receive pairs].
The differential pins [Lanes] listed in the pin out table above are LVDS which stands for: Low Voltage Differential Signaling.
PCI-Express 1x Connector Pin-Out
Pin |
Side B Connector |
Side A Connector |
||
# | Name | Description | Name | Description |
1 | +12v | +12 volt power | PRSNT#1 | Hot plug presence detect |
2 | +12v | +12 volt power | +12v | +12 volt power |
3 | +12v | +12 volt power | +12v | +12 volt power |
4 | GND | Ground | GND | Ground |
5 | SMCLK | SMBus clock | JTAG2 | TCK |
6 | SMDAT | SMBus data | JTAG3 | TDI |
7 | GND | Ground | JTAG4 | TDO |
8 | +3.3v | +3.3 volt power | JTAG5 | TMS |
9 | JTAG1 | +TRST# | +3.3v | +3.3 volt power |
10 | 3.3Vaux | 3.3v volt power | +3.3v | +3.3 volt power |
11 | WAKE# | Link Reactivation | PWRGD | Power Good |
Mechanical Key |
||||
12 | RSVD | Reserved | GND | Ground |
13 | GND | Ground | REFCLK+ | Reference Clock Differential pair |
14 | HSOp(0) | Transmitter Lane 0, Differential pair |
REFCLK- | |
15 | HSOn(0) | GND | Ground | |
16 | GND | Ground | HSIp(0) | Receiver Lane 0, Differential pair |
17 | PRSNT#2 | Hotplug detect | HSIn(0) | |
18 | GND | Ground | GND | Ground |
PCI-Express 4x Connector Pin-Out
Pin |
Side B Connector |
Side A Connector |
||
# | Name | Description | Name | Description |
1 | +12v | +12 volt power | PRSNT#1 | Hot plug presence detect |
2 | +12v | +12 volt power | +12v | +12 volt power |
3 | +12v | +12 volt power | +12v | +12 volt power |
4 | GND | Ground | GND | Ground |
5 | SMCLK | SMBus clock | JTAG2 | TCK |
6 | SMDAT | SMBus data | JTAG3 | TDI |
7 | GND | Ground | JTAG4 | TDO |
8 | +3.3v | +3.3 volt power | JTAG5 | TMS |
9 | JTAG1 | +TRST# | +3.3v | +3.3 volt power |
10 | 3.3Vaux | 3.3v volt power | +3.3v | +3.3 volt power |
11 | WAKE# | Link Reactivation | PWRGD | Power Good |
Mechanical Key |
||||
12 | RSVD | Reserved | GND | Ground |
13 | GND | Ground | REFCLK+ | Reference Clock Differential pair |
14 | HSOp(0) | Transmitter Lane 0, Differential pair |
REFCLK- | |
15 | HSOn(0) | GND | Ground | |
16 | GND | Ground | HSIp(0) | Receiver Lane 0, Differential pair |
17 | PRSNT#2 | Hotplug detect | HSIn(0) | |
18 | GND | Ground | GND | Ground |
19 | HSOp(1) | Transmitter Lane 1, Differential pair |
RSVD | Reserved |
20 | HSOn(1) | GND | Ground | |
21 | GND | Ground | HSIp(1) | Receiver Lane 1, Differential pair |
22 | GND | Ground | HSIn(1) | |
23 | HSOp(2) | Transmitter Lane 2, Differential pair |
GND | Ground |
24 | HSOn(2) | GND | Ground | |
25 | GND | Ground | HSIp(2) | Receiver Lane 2, Differential pair |
26 | GND | Ground | HSIn(2) | |
27 | HSOp(3) | Transmitter Lane 3, Differential pair |
GND | Ground |
28 | HSOn(3) | GND | Ground | |
29 | GND | Ground | HSIp(3) | Receiver Lane 3, Differential pair |
30 | RSVD | Reserved | HSIn(3) | |
31 | PRSNT#2 | Hot plug detect | GND | Ground |
32 | GND | Ground | RSVD | Reserved |
PCI-Express 8x Connector Pin-Out
Pin |
Side B Connector |
Side A Connector |
||
# | Name | Description | Name | Description |
1 | +12v | +12 volt power | PRSNT#1 | Hot plug presence detect |
2 | +12v | +12 volt power | +12v | +12 volt power |
3 | +12v | +12 volt power | +12v | +12 volt power |
4 | GND | Ground | GND | Ground |
5 | SMCLK | SMBus clock | JTAG2 | TCK |
6 | SMDAT | SMBus data | JTAG3 | TDI |
7 | GND | Ground | JTAG4 | TDO |
8 | +3.3v | +3.3 volt power | JTAG5 | TMS |
9 | JTAG1 | +TRST# | +3.3v | +3.3 volt power |
10 | 3.3Vaux | 3.3v volt power | +3.3v | +3.3 volt power |
11 | WAKE# | Link Reactivation | PWRGD | Power Good |
Mechanical Keycard |
||||
12 | RSVD | Reserved | GND | Ground |
13 | GND | Ground | REFCLK+ | Reference Clock Differential pair |
14 | HSOp(0) | Transmitter Lane 0, Differential pair |
REFCLK- | |
15 | HSOn(0) | GND | Ground | |
16 | GND | Ground | HSIp(0) | Receiver Lane 0, Differential pair |
17 | PRSNT#2 | Hotplug detect | HSIn(0) | |
18 | GND | Ground | GND | Ground |
19 | HSOp(1) | Transmitter Lane 1, Differential pair |
RSVD | Reserved |
20 | HSOn(1) | GND | Ground | |
21 | GND | Ground | HSIp(1) | Receiver Lane 1, Differential pair |
22 | GND | Ground | HSIn(1) | |
23 | HSOp(2) | Transmitter Lane 2, Differential pair |
GND | Ground |
24 | HSOn(2) | GND | Ground | |
25 | GND | Ground | HSIp(2) | Receiver Lane 2, Differential pair |
26 | GND | Ground | HSIn(2) | |
27 | HSOp(3) | Transmitter Lane 3, Differential pair |
GND | Ground |
28 | HSOn(3) | GND | Ground | |
29 | GND | Ground | HSIp(3) | Receiver Lane 3, Differential pair |
30 | RSVD | Reserved | HSIn(3) | |
31 | PRSNT#2 | Hot plug detect | GND | Ground |
32 | GND | Ground | RSVD | Reserved |
33 | HSOp(4) | Transmitter Lane 4, Differential pair |
RSVD | Reserved |
34 | HSOn(4) | GND | Ground | |
35 | GND | Ground | HSIp(4) | Receiver Lane 4, Differential pair |
36 | GND | Ground | HSIn(4) | |
37 | HSOp(5) | Transmitter Lane 5, Differential pair |
GND | Ground |
38 | HSOn(5) | GND | Ground | |
39 | GND | Ground | HSIp(5) | Receiver Lane 5, Differential pair |
40 | GND | Ground | HSIn(5) | |
41 | HSOp(6) | Transmitter Lane 6, Differential pair |
GND | Ground |
42 | HSOn(6) | GND | Ground | |
43 | GND | Ground | HSIp(6) | Receiver Lane 6, Differential pair |
44 | GND | Ground | HSIn(6) | |
45 | HSOp(7) | Transmitter Lane 7, Differential pair |
GND | Ground |
46 | HSOn(7) | GND | Ground | |
47 | GND | Ground | HSIp(7) | Receiver Lane 7, Differential pair |
48 | PRSNT#2 | Hot plug detect | HSIn(7) | |
49 | GND | Ground | GND | Ground |
PCI-Express 16x Connector Pin-Out
Pin |
Side B Connector |
Side A Connector |
||
# | Name | Description | Name | Description |
1 | +12v | +12 volt power | PRSNT#1 | Hot plug presence detect |
2 | +12v | +12 volt power | +12v | +12 volt power |
3 | +12v | +12 volt power | +12v | +12 volt power |
4 | GND | Ground | GND | Ground |
5 | SMCLK | SMBus clock | JTAG2 | TCK |
6 | SMDAT | SMBus data | JTAG3 | TDI |
7 | GND | Ground | JTAG4 | TDO |
8 | +3.3v | +3.3 volt power | JTAG5 | TMS |
9 | JTAG1 | +TRST# | +3.3v | +3.3 volt power |
10 | 3.3Vaux | 3.3v volt power | +3.3v | +3.3 volt power |
11 | WAKE# | Link Reactivation | PWRGD | Power Good |
Mechanical Key |
||||
12 | RSVD | Reserved | GND | Ground |
13 | GND | Ground | REFCLK+ | Reference Clock Differential pair |
14 | HSOp(0) | Transmitter Lane 0, Differential pair |
REFCLK- | |
15 | HSOn(0) | GND | Ground | |
16 | GND | Ground | HSIp(0) | Receiver Lane 0, Differential pair |
17 | PRSNT#2 | Hotplug detect | HSIn(0) | |
18 | GND | Ground | GND | Ground |
19 | HSOp(1) | Transmitter Lane 1, Differential pair |
RSVD | Reserved |
20 | HSOn(1) | GND | Ground | |
21 | GND | Ground | HSIp(1) | Receiver Lane 1, Differential pair |
22 | GND | Ground | HSIn(1) | |
23 | HSOp(2) | Transmitter Lane 2, Differential pair |
GND | Ground |
24 | HSOn(2) | GND | Ground | |
25 | GND | Ground | HSIp(2) | Receiver Lane 2, Differential pair |
26 | GND | Ground | HSIn(2) | |
27 | HSOp(3) | Transmitter Lane 3, Differential pair |
GND | Ground |
28 | HSOn(3) | GND | Ground | |
29 | GND | Ground | HSIp(3) | Receiver Lane 3, Differential pair |
30 | RSVD | Reserved | HSIn(3) | |
31 | PRSNT#2 | Hot plug detect | GND | Ground |
32 | GND | Ground | RSVD | Reserved |
33 | HSOp(4) | Transmitter Lane 4, Differential pair |
RSVD | Reserved |
34 | HSOn(4) | GND | Ground | |
35 | GND | Ground | HSIp(4) | Receiver Lane 4, Differential pair |
36 | GND | Ground | HSIn(4) | |
37 | HSOp(5) | Transmitter Lane 5, Differential pair |
GND | Ground |
38 | HSOn(5) | GND | Ground | |
39 | GND | Ground | HSIp(5) | Receiver Lane 5, Differential pair |
40 | GND | Ground | HSIn(5) | |
41 | HSOp(6) | Transmitter Lane 6, Differential pair |
GND | Ground |
42 | HSOn(6) | GND | Ground | |
43 | GND | Ground | HSIp(6) | Receiver Lane 6, Differential pair |
44 | GND | Ground | HSIn(6) | |
45 | HSOp(7) | Transmitter Lane 7, Differential pair |
GND | Ground |
46 | HSOn(7) | GND | Ground | |
47 | GND | Ground | HSIp(7) | Receiver Lane 7, Differential pair |
48 | PRSNT#2 | Hot plug detect | HSIn(7) | |
49 | GND | Ground | GND | Ground |
50 | HSOp(8) | Transmitter Lane 8, Differential pair |
RSVD | Reserved |
51 | HSOn(8) | GND | Ground | |
52 | GND | Ground | HSIp(8) | Receiver Lane 8, Differential pair |
53 | GND | Ground | HSIn(8) | |
54 | HSOp(9) | Transmitter Lane 9, Differential pair |
GND | Ground |
55 | HSOn(9) | GND | Ground | |
56 | GND | Ground | HSIp(9) | Receiver Lane 9, Differential pair |
57 | GND | Ground | HSIn(9) | |
58 | HSOp(10) | Transmitter Lane 10, Differential pair |
GND | Ground |
59 | HSOn(10) | GND | Ground | |
60 | GND | Ground | HSIp(10) | Receiver Lane 10, Differential pair |
61 | GND | Ground | HSIn(10) | |
62 | HSOp(11) | Transmitter Lane 11, Differential pair |
GND | Ground |
63 | HSOn(11) | GND | Ground | |
64 | GND | Ground | HSIp(11) | Receiver Lane 11, Differential pair |
65 | GND | Ground | HSIn(11) | |
66 | HSOp(12) | Transmitter Lane 12, Differential pair |
GND | Ground |
67 | HSOn(12) | GND | Ground | |
68 | GND | Ground | HSIp(12) | Receiver Lane 12, Differential pair |
69 | GND | Ground | HSIn(12) | |
70 | HSOp(13) | Transmitter Lane 13, Differential pair |
GND | Ground |
71 | HSOn(13) | GND | Ground | |
72 | GND | Ground | HSIp(13) | Receiver Lane 13, Differential pair |
73 | GND | Ground | HSIn(13) | |
74 | HSOp(14) | Transmitter Lane 14, Differential pair |
GND | Ground |
75 | HSOn(14) | GND | Ground | |
76 | GND | Ground | HSIp(14) | Receiver Lane 14, Differential pair |
77 | GND | Ground | HSIn(14) | |
78 | HSOp(15) | Transmitter Lane 15, Differential pair |
GND | Ground |
79 | HSOn(15) | GND | Ground | |
80 | GND | Ground | HSIp(15) | Receiver Lane 15, Differential pair |
81 | PRSNT#2 | Hot plug present detect | HSIn(15) | |
82 | RSVD#2 | Hot Plug Detect | GND | Ground |
PRSNT#1 is connected to GND on motherboard.
Add on card needs to have PRSNT#1 connected to one of PRSNT#2 depending what type of connector is in use.
PCI-express standards
PCI Express 1.0a
In 2003, PCI-SIG introduced PCIe 1.0a, with a per-lane data rate of 250 MB/s and a transfer rate of 2.5 gigatransfers per second (GT/s). Transfer rate is expressed in transfers per second instead of bits per second because the number of transfers includes the overhead bits, which do not provide additional throughput; PCIe 1.x uses an 8b/10b encoding scheme, resulting in a 20% (= 2/10) overhead on the raw channel bandwidth.
PCI Express 2.0
PCI-SIG announced the availability of the PCI Express Base 2.0 specification on 15 January 2007. The PCIe 2.0 standard doubles the transfer rate compared with PCIe 1.0 to 5 GT/s and the per-lane throughput rises from 250 MB/s to 500 MB/s. Consequently, a 32-lane PCIe connector (×32) can support an aggregate throughput of up to 16 GB/s. PCIe 2.0 motherboard slots are fully backward compatible with PCIe v1.x cards. PCIe 2.0 cards are also generally backward compatible with PCIe 1.x motherboards, using the available bandwidth of PCI Express 1.1. Overall, graphic cards or motherboards designed for v2.0 will work with the other being v1.1 or v1.0a. Like 1.x, PCIe 2.0 uses an 8b/10b encoding scheme, therefore delivering, per-lane, an effective 4 Gbit/s max transfer rate from its 5 GT/s raw data rate.
PCI Express 2.1
PCI Express 2.1 (dated March 4, 2009) supports a large proportion of the management, support, and troubleshooting systems planned for full implementation in PCI Express 3.0. However, the speed is the same as PCI Express 2.0. The increase in power from the slot breaks backward compatibility between PCI Express 2.1 cards and some older motherboards with 1.0/1.0a, but most motherboards with PCI Express 1.1 connectors are provided with a BIOS update by their manufacturers through utilities to support backward compatibility of cards with PCIe 2.1.
PCI Express 3.0
PCI Express 3.0 specification was made available in November 2010. New features for the PCI Express 3.0 specification include a number of optimizations for enhanced signaling and data integrity, including transmitter and receiver equalization, PLL improvements, clock data recovery, and channel enhancements for currently supported topologies. PCI Express 3.0 upgrades the encoding scheme to 128b/130b from the previous 8b/10b encoding, reducing the bandwidth overhead from 20% of PCI Express 2.0 to approximately 1.54% (= 2/130). This is achieved by XORing a known binary polynomial as a scrambler to the data stream in a feedback topology. PCI Express 3.0’s 8 GT/s bit rate effectively delivers 985 MB/s per lane, nearly doubling the lane bandwidth relative to PCI Express 2.0.
PCI Express 4.0
PCI Express 4.0 was officially announced on 2017, providing a 16 GT/s bit rate that doubles the bandwidth provided by PCI Express 3.0, while maintaining backward and forward compatibility in both software support and used mechanical interface. PCI Express 4.0 specs will also bring OCuLink-2, an alternative to Thunderbolt connector. OCuLink version 2 will have up to 16 GT/s (8 GB/s total for ×4 lanes), while the maximum bandwidth of a Thunderbolt 3 connector is 5 GB/s. Additionally, active and idle power optimizations are to be investigated.
pinouts.ru