Разное

Зарядное устройство с гасящим конденсатором: Расчет зарядного устройства с гасящим конденсатором – Поделки для авто

ПРОСТОЕ ЗАРЯДНОЕ УСТРОЙСТВО

Сборник оригинальных принципиальных схем различной степени сложности. Профессионалы найдут здесь схемы металлоискателей и устройств на микроконтроллерах, переделку импульсных блоков питания от компьютера в регулируемые лабораторные БП или мощные зарядные устройства. Практические радиосхемы генераторов, преобразователей напряжения, измерительной техники. Любителям ретро, придётся по вкусу подборка схем, посвящённых ламповым усилителям, а сторонники современной элементарной базы, найдут для себя УНЧ на микросхемах TDA, STK и LM. Для начинающих радиолюбителей мы предлагаем простые схемки мигалок, генераторов звуковых эффектов и ФМ радиожучков. Даже серьёзное радиоустройство можно собрать используя минимум деталей, так как современная электроника переходит на специализированные малогабаритные микросхемы. Это увлекательное занятие даёт возможность спаять полезный прибор или интересную электронную игрушку, устройства измерения и автоматики. Радиолюбительское творчество нашло сотни тысяч сторонников во всех странах мира, объединяя талантливых людей и стирая границы.

Все размещённые принципиальные электросхемы проверены, о чём свидетельствуют подробные фотографии и видео работы устройств. Мы не публикуем сборники из тысяч схем со всего интернета – лишь испытанные и работоспособные устройства занимают место на нашем сайте. Следует учитывать, что сборка один к одному не гарантирует исправную и надёжную работу электронных приборов. В процессе номиналы радиосхем могут отличаться от тех, что указаны в статьях. Так что приобретайте паяльник, припой, фольгированный стеклотестолит и приступайте к созданию своих, или повторению уже испытанных схем. Если возникают проблемы с поиском радиодеталей, и нужных компонентов нет в продаже в вашем городе вспомните, что на дворе 21-й век, и многие покупки делаются в интернет магазинах, доставка из которых вам на дом будет стоить дешевле, чем вы думаете. А более подробно про сборку и настройку той или иной схемы читайте на нашем форуме по схемотехнике.

Справочник по SMD деталям

Несмотря на обилие специализированных микросхем контроллеров заряда аккумуляторов, бывают случаи, когда требуется быстро и без лишних затрат собрать простое зарядное устройство из подручных деталей. Именно такая цель и была поставлена недавно передо мной – и вот что получилось. Схема данного устройства предназначена для любых видов аккумуляторов. Это бестрансформаторное зарядное устройство позволяет заряжать одновременно два аккумулятора током 60 мА в течение 12…15 часов.

В схеме зарядного устройства ограничитель пускового тока резистор 100 Ом и гасящий конденсатор 1 мкф 400В, являются наиболее ответственными деталями. Здесь можно использовать конденсатор типа К73-14 на 1 мкФ х 400 В или два К73-17 на 0,47 мкФ х 630 В, соединенные параллельно. Диоды VD1-VD4 можно применить любые с Uoбp > 200 В и Imax > 300 мА. Светодиод светится только при протекании тока заряда через аккумуляторы, его можно использовать любой, при этом подобрав резистор 100 к так, чтоб он светился достаточно ярко.

В качестве корпуса задействовал китайскую электробритву на батарейках. Моторчик выбросил, а на его место поставил все детали ЗУ. Монтаж навесной с последующей заливкой эпоксидкой. Для подключения в розетку сети 220 В выпилил пластинку из стеклотекстолита и припаял к ней изнутри два штырька от вилки. Понимаю, что конструкция получилась примитивная до беспредела – но ведь уже 5 лет работает! И ничего не греется и не сгорает. А заряжает очень надёжно и качественно, так как все новомодные ускоренные зарядки повышенным током только сокращают ресурс аккумуляторов.

При настройке устройства, значение зарядного тока определяется ёмкостью гасящего конденсатора и составляет в данном случае около 60 мА, его можно уменьшить или увеличить соответствующим изменением ёмкости. Например для установки зарядного тока 90 мА, ставьте конденсатор в полтора раза большей ёмкости – 1,5 мкФ. Как все подобные устройства с сетевым питанием, это зарядное устройство не изолировано от сети 220 В, поэтому при работе с ним требуется осторожность.

Свои рекомендации по схеме пишите на ФОРУМ

Зарядное устройство с автовыключением для аккумуляторного фонаря


В большинстве простейших зарядных устройств для никель-кадмиевых аккумуляторных батарей, применяемых, например, в карманных фонарях, не предусмотрено автоматическое прекращение зарядки. Сигнализирующий о её ходе светодиод зачастую продолжает светиться (иногда с пониженной яркостью) и после того, как батарея зарядилась полностью. Так, существует опасность выхода из строя некоторых элементов включённого в сеть зарядного устройства при нарушении контакта в цепи заряжаемой батареи.
Предлагаемое устройство, схема которого изображена на рисунке, за счёт незначительного усложнения лишено этих недостатков. Зарядка автоматически прекращается по достижении напряжением на аккумуляторной батарее заданного значения.

Ток зарядки зависит от ёмкости «гасящего» конденсатора С1. Применение двухполупериодного выпрямителя (диодного моста VD1—VD4) позволило вдвое уменьшить ёмкость этого конденсатора по сравнению с требующейся при однополупериодном выпрямителе. Это даёт возможность использовать конденсатор меньших размеров. Пока тринистор VS1 закрыт, выпрямленный ток течёт через светодиод HL1 и заряжает батарею GB1. Свечение светодиода сигнализирует об идущей зарядке.

Напряжение открывания тринистора VS1 зависит от номиналов резисторов R4 и R5. Как только оно будет достигнуто, тринистор откроется, падение напряжения на нём станет меньше напряжения батареи. Светодиод HL1 окажется включённым в обратной полярности. Весь выпрямленный ток потечёт теперь через тринистор, а не через светодиод и батарею. Зарядка прекратится, а светодиод погаснет.

Благодаря конденсатору С2 ток через тринистор не спадает до нуля по окончании каждого полупериода сетевого напряжения, что могло бы привести к закрыванию тринистора. Он остаётся открытым до отключения устройства от сети. Тринистор откроется и при случайном или преднамеренном отключении аккумуляторной батареи, не давая напряжению на конденсаторе С2 превысить допустимое значение и этим защищая его и диоды VD1 — VD4 от пробоя.

Для налаживания устройства устанавливают в него временно вместо постоянного резистора R4 переменный сопротивлением 100 кОм и подключают частично заряженную батарею из трёх никель-кадмиевых аккумуляторов, последовательно с которой соединён переменный резистор сопротивлением 100…200 Ом. Батарея включается на зарядку, причём суммарное напряжение на ней и последовательном переменном резисторе его движком устанавливают равным 4,3…4,4 В, что соответствует рекомендованному в статье В. Кириченко «Устройства контроля зарядки и разрядки аккумуляторов ручного фонаря» в «Радио», 2001, № 7, с. 36, 37.

Медленно уменьшая сопротивление переменного резистора, заменившего R4, добиваются выключения светодиода HL1. Переменный резистор выпаивают, измеряют его сопротивление и заменяют постоянным ближайшего номинала. Далее устанавливают на минимум движок переменного резистора, включённого последовательно с батареей, и вновь начинают зарядку. Постепенно увеличивая сопротивление этого резистора, убеждаются, что светодиод погаснет, а зарядка прекратится при том же напряжении на батарее и резисторе, что и в первом случае. Теперь можно, исключив переменный резистор, подключить батарею непосредственно к зарядному устройству.

Конденсатор С1 должен быть рассчитан на работу при переменном напряжении частотой 50 Гц не менее 250 В. Учтите, что на конденсаторах, как правило, указано допустимое постоянное напряжение. Оно должно быть не менее 630 В. Ёмкость конденсатора выбирают из расчёта 0,1 мкФ на каждые 6 мА зарядного тока (при напряжении в сети 220 В). Диоды и тринистор могут быть любыми, выдерживающими с некоторым запасом зарядный ток аккумулятора и напряжение полностью заряженной батареи, желательно малогабаритными. Тринистор КУ103А можно заменить более современным и имеющим меньший ток управления, например КУ112А. Если наблюдаются его ложные включения под воздействием помех, между выводами катода и анода тринистора рекомендуется подключить керамический или плёночный конденсатор ёмкостью 0,01…0,1 мкФ.

А. Староверов, г. Вологда.

Преобразователь постоянного тока в постоянный, зарядное устройство для конденсаторов принимает входное напряжение от 4,75 В до 400 В

к Роберт Милликен и Питер Лю