Все типы разрешений экрана: самая полная таблица
Разрешение экрана — это один из тех терминов, который используют люди, не зная точно, что это значит. Мы подумали, что пришло время объяснить, что такое разрешение экрана и почему это важно.
Что такое разрешение экрана?
Изображение на экране вашего компьютера состоит из тысяч или миллионов пикселей. Экран создает изображение, которое вы видите, изменяя цвета этих крошечных квадратных элементов.
Разрешение экрана говорит вам, сколько пикселей ваш экран может отображать по горизонтали и вертикали. Это написано в формуле 1920 х 1080. В этом примере экран может отображать 1920 пикселей по горизонтали и 1080 по вертикали.
Разные размеры экрана, одинаковое разрешение
Теперь все становится немного сложнее. Экраны разных размеров могут иметь одинаковое разрешение экрана. С годами цена на мониторы резко упала, поэтому может возникнуть соблазн купить самый большой экран, который вы можете себе позволить.
Но размер не единственное соображение. У вас может быть ноутбук с 15-дюймовым экраном и разрешением 1366 x 786. У вас также может быть 21-дюймовый монитор на столе с тем же разрешением 1366 x 786.
В этом примере, хотя монитор на вашем столе больше, на самом деле вы не сможете разместить на нем ничего лишнего. Общее количество пикселей одинаково.
Это означает, что выбор правильного экрана означает, что вы должны принять во внимание как размер экрана, так и его разрешение.
Что означает более высокое разрешение?
Если вы сравниваете два экрана одинакового размера, но с разным разрешением, то экран с более высоким разрешением (то есть с большим количеством пикселей) сможет показать вам больше информации, поэтому вам не придется много раз прокручивать экран.
Поскольку этот экран имеет больше пикселей, изображение будет более четким. Однако более высокое разрешение также означает, что элементы на экране, такие как значки и текст, будут выглядеть меньше.
Сейчас в продаже есть множество вариантов мониторов с самыми разными разрешениями экрана, чем когда-либо. Теперь можно купить мониторы высокой четкости (1 366 x 768), полной высокой четкости (1 920 x 1 080), широкоэкранного графического массива со сверхвысоким разрешением (1 920 x 1 200) и даже мониторы сверхвысокой четкости (3 840 x 2160), также известные как 4K.
Дело не только в разрешении экрана
Когда вы выбираете новый компьютер или монитор, не позволяйте себе ориентироваться только на разрешение экрана. Яркость и цветопередача могут различаться на разных экранах, поэтому лучший способ выбрать — сесть перед экраном и посмотреть, нравится ли вам отображаемая картинка.
Итак, есть несколько практических правил, которые помогут вам выбрать правильное разрешение:
- Если вы покупаете монитор для настольного ПК, выберите экран размером 21 «или больше, с разрешением не менее 1,920 x 1080 или более. Это называется экраном Full HD, поскольку разрешение может отображать более качественное видео.
- Если вы покупаете ноутбук, который в основном будет использоваться с отдельным монитором, стандартный экран должен подойти. Экраны ноутбуков с более высоким разрешением могут значительно увеличить расходы и не стоят затрат на случайное использование.
- Люди, которые занимаются графическим дизайном или нуждаются в одновременном доступе к множеству разных окон (например, веб-разработчики), могут воспользоваться специализированными экранами высокого разрешения.
Если вы хотите работать с большим комфортом, 15-дюймовый MacBook Pro от Apple с дисплеем Retina может похвастаться технологией True Tone и высоким коэффициентом контрастности, обеспечивающими более глубокий черный цвет и более насыщенный белый цвет. Экран LG 27 «Ultra HD — один из лучших отдельных мониторов, которые вы можете купить.
Название | Разрешение матрицы и соотношение сторон | Количество пикселей |
---|---|---|
QVGA | 320 x 240 (4:3) | 76,8 кпикс |
SIF(MPEG1 SIF) | 352 x 240 (22:15) | 84,48 кпикс |
CIF(MPEG1 VideoCD) | 352 x 288 (11:9) | 101,37 кпикс |
WQVGA | 400 x 240 (5:3) | 96 кпикс |
[MPEG2 SV-CD] | 480 x 576 (5:6 – 12:10) | 276,48 кпикс |
HVGA | 640 x 240 (8:3) или 320 x 480 (2:3 – 15:10) | 153,6 кпикс |
nHD | 640 x 360 (16:9) | 230,4 кпикс |
VGA | 640 x 480 (4:3 – 12:9) | 307,2 кпикс |
WVGA | 800 x 480 (5:3) | 384 кпикс |
SVGA | 800 x 600 (4:3) | 480 кпикс |
FWVGA | 854 x 480 (427:240) | 409,92 кпикс |
WSVGA | 1024 x 600 (128:75 – 15:9) | 614,4 кпикс |
XGA | 1024 x 768 (4:3) | 786,432 кпикс |
XGA+ | 1152 x 864 (4:3) | 995,3 кпикс |
WXVGA | 1200 x 600 (2:1) | 720 кпикс |
WXGA | 1280 x 768 (5:3) | 983,04 кпикс |
SXGA | 1280 x 1024 (5:4) | 1,31 Мпикс |
WXGA+ | 1440 x 900 (8:5 – 16:10) | 1,296 Мпикс |
SXGA+ | 1400 x 1050 (4:3) | 1,47 Мпикс |
XJXGA | 1536 x 960 (8:5 – 16:10) | 1,475 Мпикс |
WSXGA (x) | 1536 x 1024 (3:2) | 1,57 Мпикс |
WXGA++ | 1600 x 900 (16:9) | 1,44 Мпикс |
WSXGA | 1600 x 1024 (25:16) | 1,64 Мпикс |
UXGA | 1600 x 1200 (4:3) | 1,92 Мпикс |
WSXGA+ | 1680 x 1050 (8:5) | 1,76 Мпикс |
Full HD | 1920 x 1080 (16:9) | 2,07 Мпикс |
Full HD+ | 2340 x 1080 (19,5:9) | 2,3 Мпикс |
WUXGA | 1920 x 1200 (8:5 – 16:10) | 2,3 Мпикс |
QWXGA | 2048 x 1152 (16:9) | 2,36 Мпикс |
QXGA | 2048 x 1536 (4:3) | 3,15 Мпикс |
WQXGA | 2560 x 1440 (16:9) | 3,68 Мпикс |
WQXGA | 2560 x 1600 (8:5 – 16:10) | 5,24 Мпикс |
WQSXGA | 3200 x 2048 (25:16) | 6,55 Мпикс |
QUXGA | 3200 x 2400 (4:3) | 7,68 Мпикс |
WQUXGA | 3840 x 2400 (8:5 – 16:10) | 9,2 Мпикс |
4K (Quad HD) | 4096 x 2160 (256:135) | 8,8 Мпикс |
HSXGA | 5120 x 4096 (5:4) | 20,97 Мпикс |
WHSXGA | 6400 x 4096 (25:16) | 26,2 Мпикс |
HUXGA | 6400 x 4800 (4:3) | 30,72 Мпикс |
Super Hi-Vision | 7680 x 4320 (16:9) | 33,17 Мпикс |
WHUXGA | 7680 x 4800 (8:5, 16:10) | 36,86 Мпикс |
Развертка экрана: что это такое?
Возможно, вы видели разрешение экрана, описанное как что-то вроде 720p, 1080i или 1080p. Что это обозначает? Начнем с того, что буквы рассказывают о том, как картинка «рисуется» на мониторе. «Р» означает прогрессивный, а «I» означает чересстрочный.
Чересстрочная развертка является пережитком телевизионных и ранних ЭЛТ-мониторов. На экране монитора или телевизора линии пикселей расположены горизонтально. Линии было относительно легко увидеть, если вы приблизились к старому монитору или телевизору, но в настоящее время пиксели на экране настолько малы, что их трудно увидеть даже при увеличении.
Электроника монитора «рисует» каждый экран построчно и слишком быстро, чтобы глаз мог видеть её. Чересстрочный дисплей сначала рисует все нечетные строки, а затем все четные строки. Поскольку экран раскрашивается чередующимися линиями, мерцание всегда было проблемой при чересстрочном сканировании.
Производители пытались преодолеть эту проблему различными способами. Наиболее распространенным способом является увеличение количества раз, когда весь экран отображается в секунду, что называется частотой обновления.
Самая распространенная частота обновления составляла 60 раз в секунду, что приемлемо для большинства людей, но ее можно увеличить лишь немного, чтобы избавиться от мерцания, которое некоторые люди все еще ощущают.
Вот как изображение отображается на прогрессивном дисплее по сравнению с чересстрочным
Когда люди отошли от старых CRT-дисплеев, терминология изменилась с частоты обновления на частоту кадров из-за различий в работе светодиодного монитора. Частота кадров — это скорость, с которой монитор отображает каждый отдельный кадр данных.
В последних версиях Windows частота кадров составляет 60 Гц или 60 циклов в секунду, а светодиодные экраны не мерцают вообще. Более того, система перешла с чересстрочной развертки на прогрессивную, потому что новые цифровые дисплеи стали намного быстрее. При прогрессивном сканировании линии отображаются на экране последовательно, а не сначала нечетными, а затем четными.
Самый популярный монитор на Алиэкспресс
Так же по этой теме:
Разрешение экранов, соотношение сторон и их буквенные сокращения
Вы наверняка сталкивались с такой ситуацией, когда разрешение экрана обозначается буквенным сокращением, но что оно обозначает, какое количество пикселей и какое соотношение сторон у того или иного экрана из него не понятно. В такой неприятной ситуации поможет разобраться наша таблица, которая включает расширения от самого простого и уже старого QVGA и заканчивая WHUXGA. Наша таблица состоит из трех столюбцов в каждом из которых описано буквенное сокрашение разрешения экрана, его разрешение и соотношение сторон, а также количество пикселей.
Таблица разрешения экранов, соотношение сторон и их буквенные сокращения:
Буквенное сокращение | Разрешение экрана (соотношение сторон) |
Количество пикселей |
QVGA | 320×240 (4:3) | 76,8 кпикс |
SIF(MPEG1 SIF) | 352×240 (22:15) | 84,48 кпикс |
CIF(MPEG1 VideoCD) | 352×288 (11:9) | 101,37 кпикс |
WQVGA | 400×240 (5:3) | 96 кпикс |
[MPEG2 SV-CD] | 480×576 (5:6 — 12:10) | 276,48 кпикс |
HVGA | 640×240 (8:3) или 320×480 (2:3 — 15:10) | 153,6 кпикс |
nHD | 640×360 (16:9) | 230,4 кпикс |
VGA | 640×480 (4:3 — 12:9) | 307,2 кпикс |
WVGA | 800×480 (5:3) | |
SVGA | 800×600 (4:3) | 480 кпикс |
FWVGA | 854×480 (427:240) | 409,92 кпикс |
WSVGA | 1024×600 (128:75 — 15:9) | 614,4 кпикс |
XGA | 1024×768 (4:3) | 786,432 кпикс |
XGA+ | 1152×864 (4:3) | 995,3 кпикс |
WXVGA | 1200×600 (2:1) | 720 кпикс |
WXGA | 1280×768 (5:3) | 983,04 кпикс |
SXGA | 1280×1024 (5:4) | 1,31 Мпикс |
WXGA+ | 1440×900 (8:5 — 16:10) | 1,296 Мпикс |
SXGA+ | 1400×1050 (4:3) | 1,47 Мпикс |
XJXGA | 1536×960 (8:5 — 16:10) | 1,475 Мпикс |
WSXGA (x) | 1536×1024 (3:2) | 1,57 Мпикс |
WXGA++ | 1600×900 (16:9) | 1,44 Мпикс |
WSXGA | 1600×1024 (25:16) | 1,64 Мпикс |
UXGA | 1600×1200 (4:3) | 1,92 Мпикс |
WSXGA+ | 1680×1050 (8:5) | 1,76 Мпикс |
Full HD | 1920×1080 (16:9) | 2,07 Мпикс |
WUXGA | 1920×1200 (8:5 — 16:10) | 2,3 Мпикс |
QWXGA | 2048×1152 (16:9) | 2,36 Мпикс |
QXGA | 2048×1536 (4:3) | 3,15 Мпикс |
WQXGA | 2560×1440 (16:9) | 3,68 Мпикс |
WQXGA | 2560×1600 (8:5 — 16:10) | 5,24 Мпикс |
WQSXGA | 3200×2048 (25:16) | 6,55 Мпикс |
QUXGA | 3200×2400 (4:3) | 7,68 Мпикс |
WQUXGA | 3840×2400 (8:5 — 16:10) | 9,2 Мпикс |
4K (Quad HD) | 4096×2160 (256:135) | 8,8 Мпикс |
HSXGA | 5120×4096 (5:4) | 20,97 Мпикс |
WHSXGA | 6400×4096 (25:16) | 26,2 Мпикс |
HUXGA | 6400×4800 (4:3) | 30,72 Мпикс |
Super Hi-Vision | 7680×4320 (16:9) | 33,17 Мпикс |
WHUXGA | 7680×4800 (8:5, 16:10) | 36,86 Мпикс |
Надеемся на то, что собранные нами разрешения экранов в единой таблице и их сокращения пригодятся Вам при выборе монитора, телевизора, смартфона, планшета или ноутбука.
Какие бывают разрешения экрана монитора: разбираемся с качеством картинки
setafi.com Онлайн-журнал об уюте- Бытовая техника
- Аэрогриль
- Блендер
- Блинницы
- Варочная панель
- Вафельницы
- Вентиляторы
- Весы
- Ветчинница
- Винный шкаф и сервант
- Воздухоочиститель
- Вытяжки
- Гладильная доска
- Дистилляторы
- Духовой шкаф
- Ингалятор
- Йогуртница
- Кондиционер
- Кофеварка
- Кофемашина
- Кофемолка
- Кулер
- Кухонные весы
- Кухонные машины
- Кухонный комбайн
- Массажер
- Машинка для стрижки
- Микроволновая печь
- Миксеры
- Морозильная камера
- Мультиварка
- Мясорубка
- Напольные весы
- Оверлок
- Овощерезка
- Отпариватель
- Пароварка
- Паровые швабры
- Парогенератор
- Пароочистители
- Печи
- Плиты
- Плойка
- Полотенцесушители
- Посудомойка
- Пылесос
- Скороварка
- Соковыжималки
- Стиральная машина
- Сушильные машины
- Сушки для фруктов и овощей
- Сэндвичницы
- Термос
- Озонатор
- Электробритвы
- Утюг
- Фен
- Фильтры для воды
- Фотоэпилятор
- Фритюрница
- Хлебницы
- Хлебопечка
- Холодильник
- Чайники и электрочайники
- Швейная машинка
- Электрогрили
- Электронные весы
- Эпилятор
- Климатическая техника
- Водонагреватели
- Газовые обогреватели
- Инфракрасные обогреватели
- Ионизатор
- Конвекторы
- Котел
- Масляные радиаторы
- Осушители воздуха
- Обогреватели
- Озонатор
- Тепловентиляторы
- Тепловые завесы
- Тепловые пушки
- Увлажнитель воздуха
- Электрокамины
- Мебель
- Гамак
- Банкетка
- Буфет
- Вешалка
- Диван
Гид по покупке монитора в 2020 году
Узнайте, как выбрать лучший монитор для игр, профессионального или повседневного домашнего использования.
Монитор – это зеркало души компьютера. Если у вас плохой монитор, то все, что вы будете делать на своем компьютере, будет казаться скучным, будь то игра, просмотр или редактирование фотографий и видео или просто серфинг по вашим любимым сайтам.
Производители мониторов хорошо знают о том, что для разной работы нужны разные характеристики и функции, поэтому сегодня рынок мониторов заполнен огромным количеством вариантов. Но какие функции и характеристики наиболее ценны для ваших целей? Необходимо ли вам разрешение 4K, 1440p, 1080p или достаточно HD-разрешения – и в чем разница? Насколько важны частота обновления и время отклика? Имеют ли значение такие технологии, как Flicker-free, режим Low Blue Light, G-Sync и FreeSync? И как будут меняться ваши приоритеты, если вы ищете монитор для игр, для работы с профессиональными приложениями или для повседневных задач?
Советы по покупке монитора
Определите главную цель использования монитора: игры, профессиональное использование или повседневное домашнее использование. Как правило, геймеры обращают внимание на быструю частоту обновления и низкое значение времени отклика, для профессионалов важна точность цветопередачи, ну а обычные пользователи имеют менее специфические потребности, но часто выбирают монитор с высококонтрастной панелью VA.
- Чем выше разрешение, тем лучше изображение. Разрешение монитора – это количество пикселей, которые загораются на экране по горизонтали и вертикали. Разрешение 1920 x 1080, также известное как 1080p/Full HD (FHD)/HD – это минимум, который вам нужен. Но с разрешением QHD вы получите более четкое изображение, не говоря уже о 4K.
- Размер тоже имеет значение. Плотность пикселей оказывает большое влияние на качество монитора, и «золотая середина» – это 109 пикселей на дюйм (ppi). Большой монитор при низком разрешении будет иметь низкую плотность пикселей. Для просмотра с обычного расстояния на рабочем столе 32 дюймов будет много. Найти 32-дюймовый игровой или обычный монитор с разрешением 4K менее чем за 1000 долларов нетрудно.
- Время отклика: чем меньше, тем лучше. Этот параметр не играет особой роли, если вы не геймер. Время отклика говорит о том, сколько времени требуется монитору для изменения отдельных пикселей с черного на белый или, если его время отклика GTG (gray to gray – «от серого к серому») – с одного оттенка серого на другой. При более длительном времени отклика вы будете видеть размытость при игре или просмотре быстро меняющихся видеороликов. Для игровых мониторов максимальное время отклика, которое вы, вероятно, найдете, составляет 5 мс, в то время как самые быстрые игровые мониторы могут иметь время отклика 0,5 мс.
- Технологии производства: качество изображения, TN < IPS < VA. Мониторы TN — самые быстрые, но самые дешевые и имеют худшее качества изображения при просмотре с боков. Мониторы IPS имеют немного более быстрое время отклика и показывают цвет лучше, чем панели VA, но мониторы VA имеют лучший контраст из всех трех типов панелей. Подробнее о разнице между типами панелей см. раздел ниже.
- Нужен ли мне изогнутый монитор? Это зависит от предпочтений. Изогнутые мониторы позволяют получить новый визуальный опыт благодаря большому обзору, создающему эффект полного погружения, который, как утверждают, меньше напрягает глаза. Тем не менее, при просмотре под определенными углами могут появляться раздражающие блики (так как источники света идут под разными углами вместо одного). Обратите внимание, что хорошие изогнутые мониторы обычно сверхширокие – не менее 30 дюймов, что означает более высокую стоимость.
- Если вы хотите купить изогнутый монитор, изучите характеристики кривизны. Кривизна 1800R имеет радиус изгиба 1800 мм и рекомендуемое максимальное расстояние обзора 1,8 метра – и так далее. Чем ниже кривизна (минимум 1000R, по состоянию на этот год), тем более изогнут дисплей.
- Частота обновлений: чем больше, тем лучше. Частота обновлений – это количество обновлений отображаемого изображения в секунду, которое измеряется в герцах (Гц). Чем больше герц, тем более качественное, плавное и менее изменчивое изображение вы видите. Если вы геймер, частота обновления особенно важна, и вам нужен монитор с тактовой частотой не менее 75 Гц (большинство мониторов, предназначенных для игр, имеют тактовую частоту не менее 144 Гц) в сочетании с минимальным временем отклика. Если вы не геймер, вас устроит частота обновления 60 Гц.
Разрешение монитора
Изображение на ЖК-панели состоит из миллионов крошечных пикселей. Каждый пиксель состоит из трех подпикселей, по одному для каждого основного цвета. Разрешение монитора – это длина и ширина экрана в пикселях. Чем больше пикселей помещается в каждый квадратный дюйм монитора, тем более реалистичным и плавным будет изображение. Если вам нужен монитор больше 27 дюймов, то вам нужно более высокое разрешение (QHD или лучше).
Вы можете узнать, сколько пикселей у монитора, основываясь на названии его разрешения. Некоторые разрешения имеют несколько имен. Ниже приведены наиболее распространенные разрешения, которые вы можете найти в продаже, от наилучшего (наибольшее количество пикселей) до худшего (наименьшее количество пикселей). За исключением отдельных случаев мы имеем в виду соотношение сторон 16: 9.
3840 x 2160 (стандартное разрешение монитора) / 4096 x 2160 (официальное разрешение для кинотеатров)
2560 x 1440 (стандартное разрешение монитора) / 2048 x 1080 (официальное разрешение для кинотеатров)
Хотя, чем больше пикселей, тем обычно лучше, две причины могут сдержать вас от покупки монитора с разрешением QHD и более.
Первая – это ваша видеокарта. Чем больше пикселей у монитора, тем больше вычислительной мощности требуется видеокарте, чтобы своевременно изменять эти пиксели. Изображения на мониторах 4K выглядят потрясающе, но если ваша система не справляется с передачей 8,3 миллиона пикселей на кадр, общее восприятие ухудшится, и дополнительное разрешение фактически станет помехой, особенно в играх.
Второе, что может сдерживать от покупки монитора с высоким разрешением, – это возможность масштабирования шрифтов в вашей операционной системе. Windows лучше всего подходит при плотности пикселей 90-110 пикселей на дюйм (ppi). Если у монитора плотность пикселей намного выше, объекты и текст будут выглядеть очень маленькими и нечитаемыми. При обзоре 27-дюймовых мониторов 5K мы были вынуждены использовать масштабирование DPI (точек на дюйм) чтобы иметь возможность прочесть текст в наших приложениях. Качество масштабирования варьируется в зависимости от монитора и не всегда является надежным решением, если текст слишком маленький.
Какое разрешение нужно для игр?
Чем больше пикселей, тем лучше изображение. Но если у вас недостаточно мощная видеокарта, во время игры эти пиксели могут замедлить работу. Большинство видеоинтерфейсов не поддерживают частоту обновления выше 60 Гц для сигналов 4K/UHD или 5K. Хотя ситуация начинает меняться (в сегменте премиум), для игр все еще нужна очень дорогая видеокарта, чтобы играть на 4K и 60 кадров в секунду (fps). Наша Nvidia GeForce GTX Titan X с трудом справилась с этой задачей даже при снижении уровня детализации игры.
Минимальные требования к видеокарте варьируются в зависимости от игры, но если вы планируете купить монитор для игр с разрешением QHD (и не хотите понижать игровые настройки до минимума), вам понадобится как минимум GTX 1060 или RX 580.
Геймерам 4K понадобится как минимум 1070 Ti или RX Vega 64, если только у них не установлено две карты, работающие в Nvidia SLI или AMD Crossfire (советы по выбору видеокарты см. в статье «Руководство по покупке видеокарты», «Лучшие видеокарты» и «Иерархия производительности графических процессоров»). Для получения справки по выбору игрового дисплея 4K см. нашу статью «Лучшие игровые мониторы 4K».
Золотая середина сегодня – это разрешение QHD (2560 x 1440). Мониторы с диагональю до 32 дюймов имеют хорошую плотность пикселей и детализированное изображение, которое не слишком сложно для видеокарт среднего ценового уровня.
Если вам нужна максимальная скорость, FHD (1920 x 1080) предлагает самую высокую частоту кадров (сегодня вы не найдете игровых мониторов с более низким разрешением). Но не растягивайте это разрешение более чем на 27 дюймов, так как качество изображения снизится и будут видны отдельные пиксели.
Какая панель мне нужна? TN, VA или IPS
Сегодня для производства мониторов используются три главные технологии: технология TN (Twisted Nematic — скрученный нематик), VA (Vertical Alignment – выравнивание по вертикали) и IPS (In-Plane Switching или планарное переключение). У каждого вида существует несколько вариаций, имеющих свои преимущества. Мы не будем вдаваться в подробности о том, как работает каждая технология. Вместо этого мы составили таблицу, где можно увидеть, как каждая технология влияет на качество изображения и в каких случаях лучше выбрать ту или иную панель.
Производительность
Самый быстрый: малое время отклика, самые высокие частоты обновления, минимальное размытие движения; Низкая задержка ввода
Обычно самое длинное время отклика; Возможны более высокие частоты обновления
Более медленное время отклика, чем у TN, более быстрое время отклика, чем у VA; Высокая частота обновлений встречается редко
Дисплей
Худшие углы обзора; Худший цвет
Углы обзора обычно лучше, чем у TN, хуже, чем у IPS; Хороший цвет; Лучший контраст; Лучшая глубина цвета
Самые больше углы обзора; Самый лучший цвет
Цена
Самая дешевая
Более дорогие модели могут иметь производительность, сравнимую с TN
Самая дорогая
Для чего лучше подойдет
Игры
Общее использование
Профессиональное использование
Этого графика должно быть достаточно для того, чтобы принять решение о типе панели, но если вы хотите углубиться в детали, учтите следующее:
- Контраст является наиболее важным фактором качества и надежности изображения (5000: 1 лучше, чем 1000: 1). Таким образом, панели VA имеют наилучшее качество изображения среди VA, IPS и TN.
- Мы рассмотрели множество экранов TN, которые по качеству цвета не уступают более дорогим дисплеям IPS и VA. Хотя общее мнение состоит в том, что у панелей TN менее яркие цвета и контрастность, чем у панелей VA и IPS, вероятнее всего разницу вы не заметите. Многие игровые мониторы используют панели TN из-за высокой скорости отклика. Мы выяснили, что качество цвета влияет на цену больше, чем технология панели.
Игровые мониторы: какие функции имеют значение?
В существующем обилии вариантов и сложных маркетинговых терминов для геймеров легко запутаться, поэтому при поиске нового монитора нужно отсеивать лишнее. Здесь мы рассмотрим функции, которые действительно будут полезны для геймеров. Обратите внимание на то, что некоторые факторы зависят от квалификации игрока.
Наши рекомендации по выбору лучшего игрового монитора можно найти на странице «Лучшие игровые мониторы». А для любителей 4K см. нашу страницу «Лучшие игровые мониторы 4K».
В условиях соперничества геймеры должны отдавать предпочтение скорости, которая требует высокой частоты обновления (144 Гц или более), а также минимального времени отклика и задержки ввода (см. наши обзоры). Это, вероятно, ограничит ваш выбор 25 или 27 дюймами, возможно, с более низкой плотностью пикселей и без расширенного цвета или HDR.
Но, возможно, вы обычный игрок, который не думает, что заметит разницу между 60 и 144 кадрами в секунду. Вы можете выбрать 75 Гц или даже 60 Гц в сочетании с FreeSync или G-Sync (подробнее об этом далее) и обратить внимание на такие вещи, как высокое качество изображения и плотность пикселей, и выбрать 30 дюймов или больше. Если позволяет бюджет, вы сможете позволить себе более насыщенный цвет или даже HDR.
Какими должны быть частота обновления и время отклика моего игрового монитора?
В идеале вам нужен монитор с частотой не менее 75 Гц и минимальным временем отклика. Частота обновления особенно важна для геймеров, поэтому большинство игровых мониторов имеют частоту обновления не менее 144 Гц, и время отклика не более 5 мс. Тем не менее, существуют достойные игровые мониторы с частотой 60 Гц, а многие 4K-мониторы ограничены частотой 60 Гц. Если вы выберете монитор 60 Гц и захотите играть, вам не обойтись без функции G-Sync или FreeSync (подробнее об этом далее).
Меньшее разрешение + хорошая видеокарта = более высокая частота обновления. Посмотрите на изображение на изогнутом, очень широком Acer Predator Z35. Его разрешение достаточно низкое, тогда как быстрая графическая с включенной функцией G-Sync карта может достичь частоты обновления 200 Гц. Если вы покупаете монитор на длительный срок, помните, что видеокарта, которую использует ваш компьютер, через 1-3 года может легко достичь этих скоростей.
Беспокоит задержка ввода? Задержка ввода – это время, которое требуется монитору для распознавания вывода с видеокарты. Высокая частота обновления, как правило, указывает на меньшую задержку ввода, но задержка ввода обычно не указана в технических характеристиках. Для понимания просмотрите наши обзоры мониторов. Такие сайты, как DisplayLag, также предлагают непредвзятую разбивку по задержке ввода для многих мониторов.
Нужны ли мне G-Sync и FreeSync?
Игровые мониторы обычно имеют Nvidia G-Sync (ПК с видеокартами Nvidia) и/или AMD FreeSync (для работы на ПК с видеокартами AMD). Обе функции уменьшают разрывы и подвисание экрана, и мониторы с ними стоят дороже (мониторы G-Sync обычно стоят дороже, чем мониторы FreeSync). Подробнее о том, что делают эти функции, читайте в наших статьях «Что такое G-Sync от Nvidia?» и «Что такое AMD FreeSync?».
В любом случае, если ваш бюджет рассчитан на видеокарты с низкой и средней скоростью, вам наверняка понадобится монитор с G-Sync или FreeSync, который работает с минимальной частотой обновления.
Какой из них выбрать? Вот что нужно учитывать:
Какое оборудование у вас уже есть? Например, если вы уже потратили 1 200 долларов на новенькую Nvidia GeForce RTX 2080 Ti, выбор очевиден.
Nvidia или AMD? G-Sync и FreeSync предлагают сопоставимую производительность для обычного пользователя. Мы узнали об этом, когда сравнивали их друг с другом.
Мониторы G-Sync работают с частотой обновления от 30 Гц до максимальной. Дисплеи FreeSync не настолько последовательны. Мониторы FreeSync обычно поддерживают адаптивное обновление до максимальной частоты обновления монитора. Но это нижний предел, который вы должны учитывать. Мы рассмотрели экраны с частотой до 40 Гц и даже до 55 Гц. Если ваша видеокарта не может поддерживать частоту кадров выше этого уровня, это может стать проблемой. Компенсация низкой частоты кадров (LFC) является оптимальным решением, но она будет работать только в том случае, если максимальное обновление, по меньшей мере, в 2,5 раза превышает минимальное (пример: если максимальная частота обновления составляет 100 Гц, для поддержки LFC минимальная частота должна составлять 40 Гц).
В любом случае, если вы планируете играть с HDR-контентом, подумайте о приобретении монитора с функцией G-Sync Ultimate или FreeSync Premium Pro. Обе функции сертифицированы для снижения задержки ввода, а также для дополнительных преимуществ для HDR-титров.
Нужен ли мне режим Overdrive или Motion Blur Reduction?
Функции Overdrive и Motion Blur Reduction доступны во многих игровых мониторах (у различных брендов). Чтобы понять их полезность, сначала нужно понять, что такое шлейфы. Шлейф — это размытый след, который иногда создает движущийся объект на экране. Он появляется из-за неравномерного перехода пикселей или из-за того, что пикселю монитора требуется больше времени, чтобы изменить цвет с цвета A на цвет B, чем с цвета B на цвет A.
Режим Overdrive уменьшает шлейф, ускоряя скорость, с которой пиксели переходят через более высокие напряжения. Если все сделано правильно, пиксель быстро достигнет этого уровня, а затем изменится для следующего кадра, прежде чем напряжение станет слишком высоким.
Motion Blur Reduction, также известное как Ultra Low Motion Blur (ULMB на фотографии ниже), поддерживает разрешение движения, когда действие на экране становится более интенсивным.
Прежде чем принимать решение за наличие той или иной функции, нужно учесть следующее:
Функция Overdrive компенсирует время отклика монитора или запаздывание при воспроизведении видео с использованием наложений. Вы можете проверить Overdrive на своем мониторе с помощью теста BlurBusters с НЛО. Наблюдайте за НЛО, переключаясь между различными вариантами перегрузки вашего монитора. Когда вы видите белый след за тарелкой, вы зашли слишком далеко.
Вы не можете одновременно использовать функцию Motion Blur Reduction и G-Sync/FreeSync. Геймеры должны каждый раз выбирать адаптивное обновление. Если у вас установлена быстрая видеокарта, работающая со скоростью 60 кадров в секунду и выше с G-Sync или FreeSync, необходимость иметь функцию Motion Blur Reduction отпадает.
Motion Blur Reduction уменьшает общую яркость. Мы протестировали мониторы, которые снижают яркость более чем на 60%, если функция Motion Blur Reduction включена.
Как выбрать хороший игровой монитор?
Игровые мониторы часто поступают в продажу, но трудно сказать, как выбрать действительно лучший. Первый способ выяснить это – проверить отзывы и убедиться, что это именно тот монитор, который вам подходит.
Вы также можете определить, насколько выгодную покупку совершаете, следуя следующим рекомендациям:
- 144 Гц при 1080p (27 дюймов или больше): 200 долларов или меньше;
- 60 Гц при 4K: 250 долларов или меньше.
И, наконец, для товаров с Amazon рекомендуем использовать PCPartPicker.com и CamelCamelCamel для отслеживания ценовой истории конкретных мониторов.
Мониторы для повседневного домашнего использования: какие функции имеют значение?
И игровые, и профессиональные мониторы более чем пригодны для использования в качестве мониторов для общего пользования. Но если вы не хотите тратить лишние деньги на специализированный монитор, вам нужно что-то, что хорошо подойдет для всех видов работ и развлечений.
- Контраст – это главное, поэтому выбираем панели VA. Мы считаем контраст первым критерием качества изображения, после него – насыщенность цвета, четкость и разрешение. Когда дисплей имеет большой динамический диапазон, картинка становится более реалистичной и объемной. Панели VA предлагают контраст в 3-5 раз лучше, чем IPS или TN. Если вы разместите монитор VA и IPS рядом друг с другом с соответствующими уровнями яркости и калибровочными стандартами, экран VA легко выиграет с точки зрения качества изображения.
- Подумайте о функции flicker-free, если вы проводите перед экраном более 8 часов. Экран не будет мерцать на любом уровне яркости, поэтому даже те, кто особенно чувствителен к мерцанию, будут довольны.
- Наличие функции Low blue light не должно быть целью при покупке. Большинство операционных систем, включая Windows 10, имеют режим уменьшения синего света Low blue light, который, согласно исследованиям, мешает спать. Но хотя многие мониторы предлагают эту функцию, ее наличие вовсе не обязательно. Low blue light может сделать компьютерное изображение менее напрягающим глаза, но с этим справится и точная калибровка. А поскольку уменьшение яркости синего также влияет на все остальные цвета, вы можете получить неестественное изображение. Это особенно отвлекает в играх и видео. Нет необходимости обращать внимание на наличие этой функции, но найти мониторы без нее становится все труднее.
Профессиональные мониторы: на какие функции стоить обратить внимание?
Профессиональные пользователи имеют особые потребности. Если вы фотограф, корректор печати, веб-дизайнер, художник по спецэффектам, дизайнер игр или кто-то, кому нужен точный контроль цвета, этот раздел для вас.
- Мониторы, сертифицированные производителями, как мониторы с точной цветопередачей, стоят дороже, но их высокая стоимость оправдана. Если вам нужен монитор, который будет иметь точную цветопередачу сразу же после распаковки, то это ваш лучший выбор. Это особенно важно для мониторов без возможности калибровки. Профессиональные мониторы должны быть готовы к работе без настройки. Значение DeltaE (dE), равное 2 или ниже, является хорошим признаком.
- Если вам нужна калибровка. Есть два способа сделать это: экранное меню (OSD) и программное обеспечение. Посмотрите наши обзоры с рекомендациями по калибровке мониторов.
- Опции калибровки должны включать выбор различных цветовых гамм, цветовых температур и гамма-кривых. Как минимум, должны быть стандарты sRGB и Adobe RGB, цветовые температуры в диапазоне от 5000 до 7500 К и предустановки гаммы от 1,8 до 2,4. Мониторы, используемые для производства ТВ или фильмов, также должны поддерживать стандарт гаммы BT.1886.
- Flicker-free имеет большое значение, если вы проводите перед экраном компьютера восемь часов и более. Многие профессиональные мониторы сегодня предлагают эту функцию.
Какая глубина цвета мне нужна?
- Чем больше, тем лучше, а профессионалам нужно как минимум 10 бит. 8-битная панель не подойдет для большинства профессиональных графических работ. Если есть возможность, выбирайте 12 бит. Вы можете узнать больше о разнице между 10 и 12 битами здесь.
- Монитор с насыщенными цветами не принесет пользы, если ваша видеокарта не может выдавать 10- или 12-битный сигнал. Да, монитор заполнит дополнительную информацию цвета, но только с помощью интерполяции. Как и в случае с пиксельным масштабированием, дисплей не может добавить информацию, которой нет в первую очередь, только приблизительно. Многие бюджетные видеокарты ограничены 8-битным выходом.
КАКИЕ БЫВАЮТ ВИДЕО РАЗРЕШЕНИЯ ?
1. Что такое камера видеонаблюдения высокого разрешения?
Все форматы изображения с разрешением от 1280×720, считаются форматом высокой четкости (HD). В современном мире видеонаблюдения существуют два направления: аналоговое и цифровое. Соответственно, существуют аналоговые и сетевые (IP) HD-камеры. Разрешение 960H (NTSC: 960×480) не относится к категории HD. Текущие форматы разрешения HD включают в себя: 1.0 мегапиксель (720p), 1,3 мегапикселя (960p), 2 мегапикселя (1080p), 3 мегапикселя, 5 мегапикселей, 8 мегапикселей (4K UHD), 12 мегапикселей, 33 мегапикселя (8K UHD).
Как правило, сетевые HD камеры обеспечивают несколько лучшее качество изображения, чем аналоговые HD камеры того же разрешения (например, 720p).
Недавно назад один из наших клиентов сообщил, что установил систему видеонаблюдения на AHD камерах 720p (производитель заявил 1000ТВЛ) и остался недоволен: качество изображения этих 720p AHD камер оказалось даже хуже, чем у старых камер 960H. Почему это произошло, мы расскажем в четвёртой части статьи.
2. Преимущества высокой чёткости
По сравнению со стандартной чёткостью, технология HD увеличила детальность изображения. Качество изображения дополнительно улучшено благодаря различным технологиям улучшения, таких как прогрессивное сканирование, 2D/3D динамический шумоподавитель, широкий динамический диапазон (WDR) и т.д. Короче говоря, HD обеспечивает превосходное качество изображения. Обычная аналоговая камера стандарта 960H даёт разрешение 960H/WD1, что составляет 960×480 пикселей (для NTSC) или 960×576 пикселей (для PAL). После того, как сигнал будет оцифрован в DVR или гибридном видеорегистраторе, изображение будет состоять максимум из 552960 пикселей (0,5 мегапикселя).
Камера высокого разрешения может охватывать гораздо более широкую область, чем обычная камера. Возьмём для примера 12-мегапиксельная панорамную камеру с объективом типа »рыбий глаз» с углом обзора 360 градусов. Благодаря встроенному 12-мегапиксельному сенсору изображения и ePTZ (виртуальное панорамирование/наклон/масштабирование), а также возможности разделения изображения, она может заменить сразу несколько обычных камер видеонаблюдения, что значительно снизит затраты на установку и плату за последующее техобслуживание.
Отличная совместимость — еще одно преимущество HD. Независимо от того, совершаете ли вы покупки онлайн или ходите в местные магазины электроники, вы обратили внимание, что все телевизоры, видеокамеры и цифровые фотоаппараты поддерживают формат HD 1080p (FullHD). Соответственно, если вы хотите, чтобы это оборудование работало с вашей системой видеонаблюдения, вам следует выбрать систему видеонаблюдения, поддерживающую 1080p. Также мы понимаем, что 4K является текущей тенденцией, логично ожидать, что система видеонаблюдения 4K UHD станет популярной в будущем.
3. Различные форматы разрешения HD
IP камеры высокого разрешения занимают главное место в системах видеонаблюдения. Они могут обеспечить более качественное видео с большей детализацией изображения и широким охватом, чем камеры стандартного разрешения. Вы можете подобрать нужный формат сетевых (IP) камер в соответствии с вашими требованиями. Например, для приложений распознавания лиц или автомобильных номеров выбирайте мегапиксельные сетевые камеры с разрешением 1080p и более. Чтобы узнать разрешение того или иного HD формата, обратитесь к следующей таблице:
Формат | Разрешение (в пикселях) | Соотношение сторон | Развёртка |
1MP/720P | 1280×720 | 16:9 | Прогрессивная |
SXGA/960P | 1280×960 | 4:3 | Прогрессивная |
1.3MP | 1280×1024 | 5:4 | Прогрессивная |
2MP/1080P | 1920×1080 | 16:9 | Прогрессивная |
2.3MP | 1920×1200 | 16:10 | Прогрессивная |
3MP | 2048×1536 | 4:3 | Прогрессивная |
4MP | 2592×1520 | 16:9 | Прогрессивная |
5MP | 2560×1960 | 4:3 | Прогрессивная |
6MP | 3072×2048 | 3:2 | Прогрессивная |
4K Ultra HD | 3840×2160 | 16:9 | Прогрессивная |
8K Ultra HD | 7680×4320 | 16:9 | Прогрессивная |
4 Выбор HD камеры видеонаблюдения
Что ещё помимо разрешения изображения следует учитывать при выборе сетевых HD камер? Здесь мы поделимся информацией о том, как правильно выбрать HD камеры с точки зрения установщика.
Низкая освещённость (Low illumination)
Как известно, камера видеонаблюдения работает не так, как бытовой фотоаппарат — камера видеонаблюдения не может использовать вспышку при захвате изображения/видео. Если камера имеет слабые характеристики при низкой освещённости, её применение ограничено. При работе в условиях низкой освещённости такая камера »слепнет», несмотря на её очень высокое разрешение.
Высокое разрешение — палка о двух концах: производитель сенсоров не имеет возможности бесконечно увеличивать площадь кристалла, поэтому повышение разрешения связано с уменьшением размера самого пикселя при тех же размерах кристалла сенсора (обычно 1/3»), поэтому на каждый пиксель приходится меньшее количество света, что приводит к уменьшению чувствительности при возрастании разрешения (мегапикселей).
В настоящее время оптимальным значением для большинства областей видеонаблюдения является разрешение 2Мп (1080p/FullHD), именно под это разрешение существует большинство сенсоров из серии Low Illumination.
Задержка видео (Time lag)
Все сетевые (IP) камеры видеонаблюдения имеют некоторую задержку в сравнении с реальным временем, и стоимость или качество камеры не является определяющей величины этой задержки. Например, для того же изображения с разрешением 720p время задержки видео для некоторых камер составляет 0,1 с, а для некоторых других сетевых камер это время может составлять 0,4с, и даже больше 0,7с. Почему время задержки видео отличается? В отличие от аналоговой камеры, сетевая камера сжимает видео (этот процесс называется кодированием), а на пользовательских устройствах происходит декодирование видео для отображения, что приводит к задержке видео. Обычно, чем меньше время задержки, тем лучше возможности процессора обработки изображения. Это означает, что нужно выбрать сетевую камеру с наименьшей задержкой видео.
Тепловыделение
Когда камера видеонаблюдения работает, она выделяет тепло, особенно когда ночью включается инфракрасная подсветка. Это правило справедливо для любой камеры видеонаблюдения. Чрезмерное тепловыделение увеличивает вероятность перегрева и, как следствие, повреждения камеры. При выборе мегапиксельных камер обращайте внимание на:
Выбирайте камеру с меньшим энергопотреблением. Низкое энергопотребление означает, что камера экономит электроэнергию, выделяет меньше тепла. Обратная сторона: в зимнее время камера с малым тепловыделением может замёрзнуть (обычно это касается ИК фильтра), а также малое потребление означает, что установлена слабая ИК подсветка, это тоже следует учитывать.
Задумайтесь об использовании камеры с улучшенными характеристиками при низкой освещенности (без инфракрасного освещения или другого искусственного освещения). Такая камера в условиях слабой освещенности может снимать изображения даже в темноте (> 0,009 — 0,001 люкс).
Выбирайте камеру в корпусе с хорошим рассеиванием тепла. Металлический корпус предпочтительнее пластикового. Для обеспечения надёжной работы, сетевые камеры элитной серии используют ребристый радиатор на корпусе для максимального рассеивания тепла, что значительно помогает камере в обеспечении надежной работы.
Цена
»Высокая цена = это высокое качество» — в большинстве случаев это правило верно. Основываясь на отчетах исследований можно сказать: потребитель часто полагает, что более высокая цена продукта указывает на более высокий уровень качества. Но цена — не единственный показатель хорошего качества, особенно при покупке продукции »Сделано в Китае». Я работаю в сфере видеонаблюдения более пяти лет и могу утверждать, что конечные пользователи, интеграторы и установщики могут получить высококачественные продукты от китайских поставщиков/производителей по очень конкурентоспособной цене. Высококачественные камеры могут иметь уникальный дизайн корпуса, предлагать особые функции, отсутствующие в других продуктах.
Техническая поддержка
В заключение хочу сказать, что сетевые камеры также должны иметь хорошую техническую поддержку. Несмотря на то, что IP камеры становятся все более простыми в настройке и эксплуатации, конечные пользователи могут столкнуться с техническими проблемами, которые потребуют сторонней помощи. Столкнувшись с такой проблемой, вы получите у нас техническую поддержку в течение 1-2 дней, это вполне приемлемо. Именно из-за этого лично я не советую покупать камеры видеонаблюдения на Aliexpress, так как в будущем вы вряд ли получите техническую поддержку от продавцов оперативную поддержку.
Мегапиксели против ТВ-линий
Тип устройства | ТВЛ/Мегапиксели | Итоговое разрешение NTSC | Итоговое разрешение PAL | Мегапиксели NTSC | Мегапиксели PAL |
Аналоговые матрицы SONY CCD | 480TVL | 510H*492V | 500H*582V | ≈0.25 мегапикселей | ≈0.29 мегапикселей |
600TVL | 768*494 | 752*582 | ≈0.38 мегапикселей | ≈0.43 мегапикселей | |
700TVL | 976*494 | 976*582 | ≈0.48 мегапикселей | ≈0.56 мегапикселей | |
Аналоговые матрицы SONY CMOS | 1000TVL | 1280*720 | ≈0.92 мегапикселей | ||
IP камеры и IP регистраторы | 720P | 1280*720 | ≈0.92 мегапикселей | ||
960P | 1280*960 | ≈1.23 мегапикселей | |||
1080P | 1920*1080 | ≈2.07 мегапикселей | |||
3MP | 2048×1536 | ≈3.14 мегапикселей | |||
5MP | 2592×1920 | ≈4.97 мегапикселей | |||
Аналоговые регистраторы | QCIF | 176*144 | ≈0.026 мегапикселей | ||
CIF | 352*288 | ≈0.1 мегапикселей | |||
HD1 | 576*288 | ≈0.16 мегапикселей | |||
D1(FCIF) | 704*576 | ≈0.4 мегапикселей | |||
960H | 928*576 | ≈0.53 мегапикселей |
QVGA | 320×240 | 4:3 | 76,8 кпикс |
SIF (MPEG1 SIF) | 352×240 | 22:15 | 84,48 кпикс |
CIF (MPEG1 VideoCD) | 352×288 | 11:9 | 101,37 кпикс |
WQVGA | 400×240 | 5:3 | 96 кпикс |
[MPEG2 SV-CD] | 480×576 | 5:6 | 276,48 кпикс |
HVGA | 640×240 | 8:3 | 153,6 кпикс |
HVGA | 320×480 | 2:3 | 153,6 кпикс |
nHD | 640×360 | 16:9 | 230,4 кпикс |
VGA | 640×480 | 4:3 | 307,2 кпикс |
WVGA | 800×480 | 5:3 | 384 кпикс |
SVGA | 800×600 | 4:3 | 480 кпикс |
FWVGA | 848×480 | 16:9 | 409,92 кпикс |
qHD | 960×540 | 16:9 | 518,4 кпикс |
WSVGA | 1024×600 | 128:75 | 614,4 кпикс |
XGA | 1024×768 | 4:3 | 786,432 кпикс |
XGA+ | 1152×864 | 4:3 | 995,3 кпикс |
WXVGA | 1200×600 | 2:1 | 720 кпикс |
HD 720p | 1280×720 | 16:9 | 921,6 кпикс |
WXGA | 1280×768 | 5:3 | 983,04 кпикс |
SXGA | 1280×1024 | 5:4 | 1,31 Мпикс |
WXGA+ | 1440×900 | 8:5 | 1,296 Мпикс |
SXGA+ | 1400×1050 | 4:3 | 1,47 Мпикс |
XJXGA | 1536×960 | 8:5 | 1,475 Мпикс |
WSXGA (?) | 1536×1024 | 3:2 | 1,57 Мпикс |
WXGA++ | 1600×900 | 16:9 | 1,44 Мпикс |
WSXGA | 1600×1024 | 25:16 | 1,64 Мпикс |
UXGA | 1600×1200 | 4:3 | 1,92 Мпикс |
WSXGA+ | 1680×1050 | 8:5 | 1,76 Мпикс |
Full HD 1080p | 1920×1080 | 16:9 | 2,07 Мпикс |
WUXGA | 1920×1200 | 8:5 | 2,3 Мпикс |
2K | 2048×1080 | 256:135 | 2,2 Мпикс |
QWXGA | 2048×1152 | 16:9 | 2,36 Мпикс |
QXGA | 2048×1536 | 4:3 | 3,15 Мпикс |
WQXGA / Quad HD 1440p | 2560×1440 | 16:9 | 3,68 Мпикс |
WQXGA | 2560×1600 | 8:5 | 4,09 Мпикс |
QSXGA | 2560×2048 | 5:4 | 5,24 Мпикс |
3K | 3072×1620 | 256:135 | 4,97 Мпикс |
WQXGA | 3200×1800 | 16:9 | 5,76 Мпикс |
WQSXGA | 3200×2048 | 25:16 | 6,55 Мпикс |
QUXGA | 3200×2400 | 4:3 | 7,68 Мпикс |
QHD | 3440×1440 | 43:18 | 4.95 Мпикс |
WQUXGA | 3840×2400 | 8:5 | 9,2 Мпикс |
4K UHD (Ultra HD) 2160p | 3840×2160 | 16:9 | 8,3 Мпикс |
4K UHD | 4096×2160 | 256:135 | 8,8 Мпикс |
4128×2322 | 16:9 | 9,6 Мпикс | |
4128×3096 | 4:3 | 12,78 Мпикс | |
5120×2160 | 21:9 | 11,05 Мпикс | |
5K UHD | 5120×2700 | 256:135 | 13,82 Мпикс |
5120×2880 | 16:9 | 14,74 Мпикс | |
5120×3840 | 4:3 | 19,66 Мпикс | |
HSXGA | 5120×4096 | 5:4 | 20,97 Мпикс |
6K UHD | 6144×3240 | 256:135 | 19,90 Мпикс |
WHSXGA | 6400×4096 | 25:16 | 26,2 Мпикс |
HUXGA | 6400×4800 | 4:3 | 30,72 Мпикс |
7K UHD | 7168×3780 | 256:135 | 27,09 Мпикс |
8K UHD (Ultra HD) 4320p / Super Hi-Vision | 7680×4320 | 16:9 | 33,17 Мпикс |
WHUXGA | 7680×4800 | 8:5 | 36,86 Мпикс |
8K UHD | 8192×4320 | 256:135 | 35,2 Мпикс |
Таблица объема (Гб) часа записи камер видеонаблюдения для кодека H.264 при разрешении D1, 1Mp (1280*720), 2Mp (1920*1080), 3Mp(2048*1536), 5M(2560×1920) при частоте кадров 8, 12, 25 к/с и различной интенсивности движения.
Для уменьшения объема хранимой видеоинформации в видеорегистраторах применяются различные алгоритмы ее компрессии.
Основным преимуществом алгоритма H.264 является межкадровое сжатие, при котором для каждого следующего кадра определяются его отличия от предыдущего, и только эти отличия после компрессии сохраняются в архиве. При работе алгоритма периодически в архиве сохраняются опорные кадры (I-кадры), представляющие собой сжатое полное изображение, а затем на протяжении 25-100 кадров сохраняются только изменения, называемые промежуточными кадрами (P- и B-кадрами). Такой способ компрессии позволяет получить высокое качество изображения при малом объеме, но требует большего объема вычислений, чем компрессия в стандарте MJPEG.
При использовании алгоритма MJPEG компрессии подвергается каждый кадр не зависимо от наличия в нем отличий от предыдущего. Поэтому единственным способом уменьшения объема сохраняемых данных является увеличение компрессии и тем самым снижение качества записи. Такой способ используется только в простых автономных видеорегистраторах, не требующих длительного хранения информации.
Еще одним преимуществом алгоритма h364 является его возможность работы в режиме постоянного потока (CBR — constant bit rate) при котором степень компрессии видеоинформации изменяется динамически и таким образом четко фиксируется объем создаваемого архива за одну секунду. Такая особенность алгоритма позволяет однозначно определить максимальный объем архива за час непрерывной работы системы, а также необходимый сетевой трафик при удаленном доступе.
Разрешение графического дисплея — Graphics display resolution
Ширина и высота электронного устройства визуального отображения, например монитора компьютера, в пикселях
Диаграмма, показывающая количество пикселей при разных разрешениях дисплеяРазрешение графического дисплея — это размер в пикселях ширины и высоты электронного устройства визуального отображения , например монитора компьютера . Определенные комбинации ширины и высоты стандартизированы (например, VESA ) и обычно имеют имя и инициализацию , описывающую его размеры. Более высокое разрешение дисплея на дисплее того же размера означает, что отображаемое фото или видеоконтент выглядит более резким , а пиксельная графика — меньше.
Содержание
- 1 Обзор по вертикальному разрешению и соотношению сторон
- 2 Соотношение сторон
- 3 Высокое разрешение
- 3,1 640 × 360 (nHD)
- 3,2 960 × 540 (qHD)
- 3,3 1280 × 720 (HD)
- 3,4 1280 × 1080
- 3,5 1600 × 900 (HD +)
- 3,6 1920 × 1080 (FHD)
- 3,7 2048 × 1080 (DCI 2K)
- 3,8 2160 × 1080
- 3,9 2560 × 1080
- 3,10 2560 × 1440 (QHD, WQHD)
- 3,11 3200 × 1800 (QHD +)
- 3,12 3440 × 1440
- 3,13 3840 × 1080
- 3,14 3840 × 1600
- 3,15 3840 × 2160 (4K UHD)
- 3,16 4096 × 2160 (DCI 4K)
- 3,17 5120 × 2160
- 3,18 5120 × 2880 (5 КБ)
- 3,19 7680 × 4320 (8K UHD)
- 3,20 17280 × 4320 (16K)
- 4 Видеографический массив
- 4,1 160 × 120 (QQVGA)
- 4,2 240 × 160 (HQVGA)
- 4,3 320 × 240 (QVGA)
- 4,4 400 × 240 (WQVGA)
- 4,5 480 × 320 (HVGA)
- 4,6 640 × 480 (VGA)
- 4,7 768 × 480 (WVGA)
- 4,8 854 × 480 (FWVGA)
- 4,9 800 × 600 (SVGA)
- 4,10 960 × 640 (DVGA)
- 4,11 1024 × 576 , 1024 × 600 (WSVGA)
- 5 Расширенный графический массив
- 5,1 1024 × 768 (XGA)
- 5.2 1366 × 768 и аналогичные (WXGA)
- 5,3 1152 × 864 (XGA +)
- 5,4 1440 × 900 (WXGA +, WSXGA)
- 5,5 1280 × 1024 (SXGA)
- 5,6 1400 × 1050 (SXGA +)
- 5,7 1680 × 1050 (WSXGA +)
- 5,8 1600 × 1200 (UXGA, UGA)
- 5,9 1920 × 1200 (WUXGA)
- 6-ти четырехъядерный расширенный графический массив
- 7 Несистематические разрешения
- 8 См. Также
- 9 ссылки
Обзор по вертикальному разрешению и соотношению сторон
Высота (пикс.) | Соотношение сторон дисплея | |||||||
---|---|---|---|---|---|---|---|---|
1,25 (5∶4) | 1. 3 (4∶3) | 1,5 (3∶2) | 1,6 (16∶10) | 1. 6 (15∶9) | 1. 7 (16∶9) | 2,0 (18∶9) | 2. 370 (64∶27 ≈ 21∶9) | |
120 | 160 QQVGA | |||||||
144 | 192 | 256 | ||||||
160 | 240 HQVGA | |||||||
240 | 320 QVGA | 360 WQVGA | 384 WQVGA | 400 ВтQVGA | 432 FWQVGA (9∶5) | |||
320 | 480 HVGA | |||||||
360 | 480 | 640 нHD | ||||||
480 | 640 VGA | 720 WVGA | 768 WVGA | 800 WVGA | 854 FWVGA | 960 FWVGA | ||
540 | 960 qHD | |||||||
576 | 768 PAL | 1024 WSVGA | ||||||
600 | 750 | 800 SVGA | 1024 WSVGA (≈ 17∶10) | |||||
640 | 960 DVGA | 1024 | 1136 | |||||
720 | 960 | 1152 | 1280 HD / WXGA | 1440 | ||||
768 | 960 | 1024 XGA | 1152 WXGA | 1280 WXGA | 1366 FWXGA | |||
800 | 1280 WXGA | |||||||
864 | 1152 XGA + | 1280 | 1536 | |||||
900 | 1200 | 1440 WXGA + | 1600 HD + | |||||
960 | 1280 SXGA- | 1440 FWXGA + | 1536 | |||||
1024 | 1280 SXGA | 1600 WSXGA | ||||||
1050 | 1400 SXGA + | 1680 WSXGA + | ||||||
1080 | 1440 | 1920 FHD / 2K | 2160, 2280 (19–9) | 2560 | ||||
1152 | 2048 QWXGA | |||||||
1200 | 1500 | 1600 UXGA | 1920 WUXGA | |||||
1280 | 1920 г. | 2048 | ||||||
1440 | 1920 г. | 2160 FHD + | 2304 | 2560 (Вт) QHD | 2880, 2960 (18 1 / 2 №9), 3040 (19∶9) | 3120 (19 1 / 2 №9), 3200 (20-9), 3440 (21 1 / 2 ∶9) | ||
1536 | 2048 QXGA | |||||||
1600 | 2400 | 2560 WQXGA | 3840 (12∶5) | |||||
1620 | 2880 3 К | |||||||
1800 | 2880 | 3200 QHD + | ||||||
1920 г. | 2560 | 2880 | 3072 | |||||
2048 | 2560 QSXGA | 2732 | 3200 WQSXGA (25∶16) | |||||
2160 | 2880 | 3240 | 3840 4K UHD | 4320 | 5120 | |||
2400 | 3200 QUXGA | 3840 WQUXGA | ||||||
2560 | 3840 | 4096 | ||||||
2880 | 5120 5K | 5760 | ||||||
3072 | 4096 | |||||||
4320 | 7680 8K UHD |
Соотношение сторон
Сравнение нескольких стандартов отображения.Предпочтительное соотношение сторон дисплеев для массового рынка постепенно изменилось с 4: 3, затем на 16:10, затем на 16: 9, а теперь меняется на 18: 9 для телефонов. Соотношение сторон 4: 3 обычно отражает более старые продукты, особенно эпоху электронно-лучевой трубки (ЭЛТ). Соотношение сторон 16:10 наиболее широко использовалось в период 1995–2010 годов, а соотношение сторон 16: 9 имеет тенденцию отражать дисплеи массовых компьютерных мониторов, ноутбуков и развлекательных продуктов после 2010 года. На ЭЛТ часто наблюдалась разница между соотношением сторон разрешения компьютера и соотношением сторон дисплея, вызывающим неквадратные пиксели (например, 320 × 200 или 1280 × 1024 на дисплее 4: 3).
Соотношение сторон 4: 3 было обычным явлением в старых телевизионных дисплеях с электронно-лучевой трубкой (ЭЛТ), которые было нелегко адаптировать к более широкому соотношению сторон. Когда около 2000 года альтернативные технологии хорошего качества (например, жидкокристаллические дисплеи (ЖК-дисплеи) и плазменные дисплеи) стали более доступными и менее дорогими, обычные компьютерные дисплеи и развлекательные продукты перешли на более широкое соотношение сторон, сначала на 16:10 соотношение. Соотношение 16:10 позволило найти некоторый компромисс между показом старых телешоу с соотношением сторон 4: 3, но также позволило улучшить просмотр широкоэкранных фильмов. Однако примерно в 2005 году соотношение сторон домашних развлекательных дисплеев (например, телевизоров) постепенно изменилось с 16:10 на 16: 9 для дальнейшего улучшения просмотра широкоэкранных фильмов. Примерно к 2007 году практически все развлекательные дисплеи массового рынка имели формат 16: 9. В 2011 году 1920 × 1080 (Full HD, собственное разрешение Blu-ray) было предпочтительным разрешением дисплеев на рынке развлечений, пользующимся наибольшим спросом. Следующий стандарт, 3840 × 2160 (4K UHD), был впервые продан в 2013 году.
Также в 2013 году появились дисплеи с разрешением 2560 × 1080 (соотношение сторон 64:27 или 2. 370 , обычно называемое «21: 9» для удобства сравнения с 16: 9), что близко приближается к стандартному соотношению сторон обычных фильмов CinemaScope. 2,35–2,40. В 2014 году также стали доступны экраны «21: 9» с размером пикселей 3440 × 1440 (фактическое соотношение сторон 43:18 или 2,3 8 ).
В индустрии компьютерных дисплеев соотношение сторон 16:10 сохранялось дольше, чем в индустрии развлечений, но в период 2005–2010 годов компьютеры все больше продавались как продукты двойного назначения, которые использовались в традиционных компьютерных приложениях, а также как средство просмотра развлекательного контента. . В это время, за заметным исключением Apple, почти все производители настольных компьютеров, ноутбуков и дисплеев постепенно перешли на продвижение дисплеев с соотношением сторон 16: 9. К 2011 году соотношение сторон 16:10 практически исчезло с рынка дисплеев для ноутбуков с Windows (хотя ноутбуки Mac по-прежнему в основном имеют формат 16:10, включая MacBook Pro с экраном 15 дюймов с разрешением 2880 × 1800 и MacBook Pro с экраном 13 дюймов с разрешением 2560 × 1600 ). . Одним из следствий этого перехода стало то, что самые высокие доступные разрешения в целом сместились вниз (т. Е. Переход от дисплеев портативных компьютеров с разрешением 1920 x 1200 к дисплеям с разрешением 1920 x 1080 ).
Высокое разрешение
имя | H (пикс.) | V (пикс.) | H: V | В × В (Mpx) |
---|---|---|---|---|
nHD | 640 | 360 | 16: 9 | 0,230 |
qHD | 960 | 540 | 16: 9 | 0,518 |
HD | 1280 | 720 | 16: 9 | 0,922 |
HD + | 1600 | 900 | 16: 9 | 1,440 |
FHD | 1920 г. | 1080 | 16: 9 | 2,074 |
(Вт) QHD | 2560 | 1440 | 16: 9 | 3,686 |
QHD + | 3200 | 1800 | 16: 9 | 5,760 |
4K UHD | 3840 | 2160 | 16: 9 | 8,294 |
5K | 5120 | 2880 | 16: 9 | 14,746 |
8K UHD | 7680 | 4320 | 16: 9 | 33,178 |
16K | 15360 | 8640 | 16: 9 | 132,710 |
Все стандартные разрешения HD имеют соотношение сторон 16∶9, хотя также существуют производные разрешения с меньшим или большим соотношением сторон. Большинство более узких разрешений используются только для хранения, а не для отображения видео.
640 × 360 (nHD)
nHD — это разрешение дисплея 640 × 360 пикселей, что составляет ровно одну девятую кадра Full HD (1080p) и четверть кадра HD (720p). Удвоение пикселей (по вертикали и горизонтали) кадры nHD образуют один кадр 720p, а кадры nHD с утроением пикселей образуют один кадр 1080p.
Одним из недостатков этого разрешения относительно кодирования является то, что количество строк не кратно 16, что является обычным размером макроблока для видеокодеков . Видеокадры, закодированные макроблоками 16 × 16 пикселей, будут дополнены до 640 × 368, а добавленные пиксели будут обрезаны при воспроизведении. Кодеки H.264 имеют встроенную функцию заполнения и обрезки в стандартной комплектации. То же самое верно для qHD и 1080p, но относительное количество отступов больше для более низких разрешений, таких как nHD.
Чтобы избежать хранения восьми строк с заполненными пикселями, некоторые люди предпочитают кодировать видео с разрешением 624 × 352 , в котором хранится только одна строка с заполнением. Когда такие видеопотоки либо кодируются из кадров HD, либо воспроизводятся на дисплеях HD в полноэкранном режиме (720p или 1080p), они масштабируются с помощью нецелочисленных масштабных коэффициентов. С другой стороны, настоящие кадры nHD имеют целочисленные масштабные коэффициенты, например Nokia 808 PureView с дисплеем nHD.
960 × 540 (qHD)
qHD — это разрешение дисплея 960 × 540 пикселей, что составляет ровно четверть кадра Full HD (1080p) при соотношении сторон 16: 9 .
Одним из немногих настольных телевизоров, которые использовали это разрешение в качестве родного, был Sony XEL-1 . Подобно DVGA, это разрешение стало популярным для дисплеев смартфонов высокого класса в начале 2011 года. Мобильные телефоны, включая Jolla , Sony Xperia C , HTC Sensation , Motorola Droid RAZR , LG Optimus L9 , Microsoft Lumia 535 и Samsung Galaxy S4 Mini, имеют дисплеи с разрешение qHD, как и портативная игровая система PlayStation Vita .
1280 × 720 (HD)
Основная статья: 720pHD разрешение 1280 × 720 пикселей происходит от телевидения высокой четкости (HDTV), где первоначально использовалось 50 или 60 кадров в секунду. При соотношении сторон 16: 9 это ровно в 2 раза больше ширины и 1 1 / 2 раз больше высоты 4: 3 VGA , который имеет такое же соотношение сторон и 480 строк, как NTSC . Таким образом, HD имеет ровно в 3 раза больше пикселей, чем VGA, то есть почти 1 мегапиксель .
Это разрешение часто называют 720p , хотя p (который означает прогрессивную развертку и важен для форматов передачи) не имеет значения для обозначения разрешений цифрового дисплея. При различении 1280 × 720 от 1920 × 1080 пара иногда обозначается как HD1 или HD-1 и HD2 или HD-2 соответственно.
В середине 2000-х годов, когда на рынке дебютировали цифровая технология и стандарт HD, этот тип разрешения часто назывался фирменным названием HD ready или сокращенно HDr , которое определяло его как минимальное разрешение для устройств, которые могут претендовать на сертификация. Однако было создано несколько экранов, которые действительно используют это разрешение изначально. Большинство из них используют панели 16: 9 с 768 строками ( WXGA ), что приводит к нечетному количеству пикселей в строке, т. Е. 1365 1 / 3 округляются до 1360, 1364, 1366 или даже 1376, следующего кратного 16.
1280 × 1080
1280 × 1080 — это разрешение формата DVCPRO HD от Panasonic , а также видеокамер DV, использующих этот формат, и их ЖК-экранов TFT. Он имеет соотношение сторон 32:27 (1. 185 : 1), примерно как у камер Movietone 1930-х годов. В 2007 году Hitachi выпустила несколько моделей телевизоров с диагональю 42 и 50 дюймов с таким разрешением.
1600 × 900 (HD +)
Разрешение HD + ( HD Plus ) 1600 × 900 пикселей с соотношением сторон 16: 9 часто называют 900p .
1920 × 1080 (FHD)
Основная статья: 1080pFHD ( Full HD ) — это разрешение, используемое видеоформатами 1080p и 1080i HDTV . Он имеет соотношение сторон 16: 9 и всего 2 073 600 пикселей, то есть очень близко к 2 мегапикселям, и ровно на 50% больше, чем 720p HD ( 1280 × 720 ) в каждом измерении, то есть в 2,25 раза больше пикселей. При использовании чересстрочной развертки требования к полосе пропускания без сжатия аналогичны требованиям для 720p при той же частоте полей (увеличение на 12,5%, поскольку одно поле видео 1080i составляет 1 036 800 пикселей, а один кадр видео 720p — 921 600 пикселей). Хотя количество пикселей одинаково для 1080p и 1080i, эффективное разрешение для чересстрочного формата несколько ниже, так как необходимо использовать некоторую вертикальную фильтрацию нижних частот для уменьшения временных артефактов, таких как построчный твиттер .
2048 × 1080 (DCI 2K)
DCI 2K — это стандартизированный формат, созданный консорциумом Digital Cinema Initiatives в 2005 году для видеопроекции 2K. Этот формат имеет разрешение 2048 × 1080 (2,2 мегапикселя) с соотношением сторон 256: 135 (1,8 962 : 1). Это собственное разрешение для цифровых проекторов и дисплеев 2K, совместимых с DCI.
2160 × 1080
2160 × 1080 — это разрешение, используемое многими смартфонами с 2018 года. Оно имеет соотношение сторон 18: 9, что соответствует формату пленки Univisium .
2560 × 1080
Это разрешение эквивалентно Full HD ( 1920 × 1080 ), расширенному по ширине на 33%, с соотношением сторон 64:27 . Иногда его называют «сверхшироким 1080p» или «UW-FHD» (сверхширокий FHD). Мониторы с таким разрешением обычно содержат встроенную прошивку, которая разделяет экран на два экрана с разрешением 1280 × 1080 .
2560 × 1440 (QHD, WQHD)
«WQHD» перенаправляется сюда. Информацию о радиостанции см. В WQHD-LP . Основная статья: 1440pQHD ( Quad HD ), WQHD ( Wide Quad HD ) или 1440p — это разрешение дисплея 2560 × 1440 пикселей с соотношением сторон 16: 9 . Название QHD отражает тот факт, что у него в четыре раза больше пикселей, чем у HD (720p). Его также обычно называют WQHD , чтобы подчеркнуть, что это широкое разрешение, хотя это технически не нужно, поскольку все разрешения HD широкие. Одним из преимуществ использования «WQHD» является избежание путаницы с qHD с маленьким q ( 960 × 540 ).
Это разрешение рассматривалось ATSC в конце 1980-х, чтобы стать стандартным форматом HDTV, потому что оно ровно в 4 раза больше по ширине и в 3 раза по высоте VGA, который имеет такое же количество строк, что и сигналы NTSC на SDTV 4: 3 формата изображения. Прагматические технические ограничения заставили их выбрать вместо этого хорошо известные форматы 16: 9 с удвоенной (HD) и трехкратной (FHD) шириной VGA.
В октябре 2006 года компания Chi Mei Optoelectronics (CMO) объявила о выпуске 47-дюймовой ЖК-панели 1440p, которая будет выпущена во втором квартале 2007 года; Планировалось, что панель наконец-то дебютирует на FPD International 2008 в виде автостереоскопического 3D-дисплея . По состоянию на конец 2013 года мониторы с таким разрешением становились все более распространенными.
Дисплей Apple , Thunderbolt , 27-дюймовый монитор продается с июля 2011 года по июнь 2016 года было родное разрешение 2560 × 1440, так же как и его предшественник 27-дюймовый монитор Apple LED Cinema Display .
Разрешение также используется в портативных устройствах. В сентябре 2012 года Samsung анонсировала ноутбук Series 9 WQHD с 13-дюймовым дисплеем 2560 × 1440 . В августе 2013 года LG анонсировала 5,5-дюймовый дисплей смартфона QHD, который использовался в LG G3 . В октябре 2013 года Vivo анонсировала смартфон с дисплеем 2560 × 1440 . В 2014 году последовали и другие производители телефонов, такие как Samsung с Galaxy Note 4 и Google и Motorola со смартфоном Nexus 6 . К середине 2010-х это было обычное разрешение среди флагманских телефонов, таких как HTC 10 , Lumia 950 , Galaxy S6 и S7.
3200 × 1800 (QHD +)
Это разрешение имеет соотношение сторон 16: 9 и ровно в четыре раза больше пикселей, чем разрешение 1600 × 900 HD +. Различные компании называли его WQXGA + , QHD и QHD + .
3440 × 1440
Это разрешение эквивалентно QHD ( 2560 × 1440 ), увеличенному по ширине на 34%, что дает соотношение сторон 43:18 (2,3 8 : 1 или 21,5: 9; обычно продается как просто «21: 9»). Первым монитором, поддерживающим такое разрешение, стал 34-дюймовый LG 34UM95-P. LG использует термин UW-QHD для описания этого разрешения. Этот монитор был впервые выпущен в Германии в конце декабря 2013 года, а затем был официально анонсирован на выставке CES 2014.
Первые продукты , объявленные использовать это разрешение было 2013 HP Envy 14 TouchSmart Ultrabook и 13,3-дюймовый Samsung Ativ Q .
3840 × 1080
Это разрешение эквивалентно двум дисплеям Full HD ( 1920 × 1080 ) бок о бок или одной вертикальной половине дисплея 4K UHD ( 3840 × 2160 ). Он имеет соотношение сторон 32: 9 (3. 55 : 1), что близко к соотношению сторон 3,6: 1 IMAX UltraWideScreen 3.6 . Мониторы Samsung с этим разрешением содержат встроенную прошивку для разделения экрана на два экрана с разрешением 1920 × 1080 или один с разрешением 2560 × 1080 и один с разрешением 1280 × 1080 .
3840 × 1600
Это разрешение имеет соотношение сторон 12: 5 (2,4: 1 или 21,6: 9). Это эквивалентно WQXGA ( 2560 × 1600 ), увеличенному на 50%, или 4K UHD ( 3840 × 2160 ), уменьшенному по высоте на 26%. Такое разрешение обычно встречается в кинематографическом контенте 4K, который был обрезан по вертикали до широкоформатного формата 2,4: 1. Первым монитором, поддерживающим такое разрешение, стал 37,5-дюймовый LG 38UC99-W. За ними последовали и другие производители: Dell U3818DW, HP Z38c и Acer XR382CQK. Это разрешение называется UW4K , WQHD + , UWQHD + или QHD + , хотя единого названия не согласовано.
3840 × 2160 (4K UHD)
Это разрешение, иногда называемое 4K UHD или 4K × 2K , имеет соотношение сторон 16: 9 и 8 294 400 пикселей. Он вдвое превышает размер Full HD ( 1920 × 1080 ) в обоих измерениях, в общей сложности в четыре раза больше пикселей, и в три раза больше HD ( 1280 × 720 ) в обоих измерениях, что в общей сложности в девять раз больше пикселей. Это наименьшее общее кратное из разрешений HDTV.
3840 × 2160 был выбран качестве разрешающей способности UHDTV1 формата определенного в SMPTE ST 2036-1, а также 4K UHDTV системы определенной в ITU-R BT.2020 и UHD-1 вещательного стандарта от DVB . Это также минимальное требование разрешения для определения CEA для дисплея Ultra HD . До публикации этих стандартов его иногда небрежно называли QFHD (Quad Full HD).
Первые коммерческие дисплеи с таким разрешением включают 82-дюймовый ЖК-телевизор, представленный Samsung в начале 2008 года, Sony SRM-L560, 56-дюймовый эталонный ЖК-монитор, анонсированный в октябре 2009 года, 84-дюймовый дисплей, продемонстрированный LG в середине 2008 года. -2010, и 27,84-дюймовый 158 PPI 4K IPS монитор для медицинских целей , запущенных Innolux в ноябре 2010 г. в октябре 2011 года Toshiba объявила о REGZA 55×3, который утверждал, что первый 4K без очков 3D TV.
DisplayPort поддерживает 3840 × 2160 при 30 Гц в версии 1.1 и добавлен поддержку до 75 Гц в версии 1.2 (2009 г.) и 120 Гц в версии 1.3 (2014 г.), в то время как HDMI добавил поддержку 3840 × 2160 при 30 Гц в версии 1.4. (2009 г.) и 60 Гц в версии 2.0 (2013 г.).
Когда в DisplayPort 1.2 была добавлена поддержка 4K с частотой 60 Гц, не существовало контроллеров синхронизации DisplayPort (TCON), которые могли бы обрабатывать необходимый объем данных из одного видеопотока. В результате к первым мониторам 4K с 2013 г. по начало 2014 г., таким как Sharp PN-K321, Asus PQ321Q и Dell UP2414Q и UP3214Q, внутренне обращались как к двум мониторам 1920 × 2160 , расположенным рядом, а не к одному дисплею, и были сделаны использование функции многопотоковой передачи данных (MST) DisplayPort для мультиплексирования отдельного сигнала для каждой половины соединения с разделением данных между двумя контроллерами синхронизации. Новые контроллеры синхронизации стали доступны в 2014 году, а после середины 2014 года новые мониторы 4K, такие как Asus PB287Q, больше не полагаются на технику мозаики MST для достижения 4K при 60 Гц, вместо этого используется стандартный подход SST ( однопоточная передача ).
В 2015 году Sony анонсировала Xperia Z5 Premium , первый смартфон с дисплеем 4K, а в 2017 году Sony анонсировала Xperia XZ Premium , первый смартфон с дисплеем 4K HDR .
4096 × 2160 (DCI 4K)
4096 × 2160 , называемое DCI 4K , Cinema 4K или 4K × 2K , — это разрешение, используемое контейнерным форматом 4K, определенным Спецификацией системы цифрового кино Digital Cinema Initiatives , известным стандартом в киноиндустрии. Это разрешение имеет соотношение сторон 256: 135 (1,8 962 : 1) и всего 8 847 360 пикселей. Это собственное разрешение для цифровых проекторов и дисплеев DCI 4K.
HDMI добавила поддержку 4096 × 2160 при 24 Гц в версии 1.4 и 60 Гц в версии 2.0.
5120 × 2160
Это разрешение эквивалентно 4K UHD ( 3840 × 2160 ), расширенному по ширине на 33%, что дает соотношение сторон 64:27 (2. 370 или 21. 3 : 9, обычно продаваемое как просто «21: 9») и 11 059 200 всего пикселей. Это ровно вдвое больше 2560 × 1080 в обоих измерениях, то есть в четыре раза больше пикселей. Первыми дисплеями, поддерживающими это разрешение, были 105-дюймовые телевизоры LG 105UC9 и Samsung UN105S9W. В декабре 2017 года LG анонсировала 34-дюймовый монитор с разрешением 5120 × 2160 пикселей, 34WK95U. LG называет это разрешение 5K2K WUHD .
5120 × 2880 (5 КБ)
Это разрешение, обычно называемое 5K или 5K × 3K , имеет соотношение сторон 16: 9 и 14 745 600 пикселей. Хотя он не установлен ни одним из стандартов UHDTV, некоторые производители, такие как Dell, называют его UHD + . Это ровно вдвое больше, чем у QHD ( 2560 × 1440 ) в обоих измерениях, в общей сложности в четыре раза больше пикселей, и на 33% больше, чем 4K UHD ( 3840 × 2160 ) в обоих измерениях, всего 1,77 раз больше пикселей. Число строк 2880 также является наименьшим общим кратным 480 и 576, числу строк развертки для NTSC и PAL соответственно. Такое разрешение позволяет масштабировать SD-контент по вертикали для соответствия натуральным числам (6 для NTSC и 5 для PAL). Горизонтальное масштабирование SD всегда дробное (неанаморфное: 5,33 … 5,47, анаморфное: 7,11 … 7,29).
Первым дисплеем с таким разрешением стал Dell UltraSharp UP2715K, анонсированный 5 сентября 2014 года. 16 октября 2014 года Apple анонсировала iMac с дисплеем Retina 5K .
В DisplayPort версии 1.3 добавлена поддержка 5K при 60 Гц по одному кабелю, тогда как DisplayPort 1.2 поддерживает только 5K при 30 Гц. Ранние дисплеи 5K 60 Гц, такие как Dell UltraSharp UP2715K и HP DreamColor Z27q, которые не поддерживали DisplayPort 1.3, требовали двух подключений DisplayPort 1.2 для работы при 60 Гц в режиме мозаичного дисплея, аналогичном ранним дисплеям 4K с использованием DP MST.
Другое разрешение с такой же шириной 5120 пикселей, что является наименьшим общим кратным популярных 1024 и 1280, но другое соотношение сторон также называется «5K», а некоторые номинальные разрешения 5K имеют ширину всего 4800 пикселей, что является самым низким общим кратно 960 и 800.
7680 × 4320 (8K UHD)
Это разрешение, иногда называемое 8K UHD , имеет соотношение сторон 16: 9 и 33 177 600 пикселей. Это ровно в два раза больше, чем 4K UHD ( 3840 × 2160 ) в каждом измерении, в общей сложности в четыре раза больше пикселей, и в четыре раза больше размера Full HD ( 1920 × 1080 ) в каждом измерении, в общей сложности в шестнадцать раз больше. пикселей. 7680 × 4320 был выбран в качестве разрешающей способности UHDTV2 формата , определенного в SMPTE ST 2036-1, а также 8K UHDTV системы , определенной в ITU-R BT.2020 и UHD-2 вещательного стандарта от DVB .
DisplayPort 1.3, завершенный VESA в конце 2014 года, добавил поддержку 7680 × 4320 при 30 Гц (или 60 Гц с субдискретизацией Y′C B C R 4: 2: 0). Технология сжатия видеопотока (DSC) VESA , которая была частью ранних черновиков DisplayPort 1.3 и обеспечивала бы разрешение 8K при 60 Гц без субдискретизации, была исключена из спецификации до публикации окончательного проекта.
Поддержка DSC была вновь введена с публикацией DisplayPort 1.4 в марте 2016 года. Используя DSC, форму сжатия «без визуальных потерь», возможны форматы до 7680 × 4320 (8K UHD) при 60 Гц с HDR и глубиной цвета 30 бит / пикс. без подвыборки.
17280 × 4320 (16K)
Sony представила на выставке NAB 2019 коммерческий дисплей 16K шириной 64 фута и высотой 18 футов, который должен быть выпущен в Японии. Он состоит из 576 модулей (360 × 360 пикселей) в форме 48 на 12 модулей, образующих экран 17280 × 4320 с соотношением сторон 4: 1.
Видеографическая матрица
имя | H (пикс.) | V (пикс.) | H: V | В × В (Mpx) |
---|---|---|---|---|
QQVGA | 160 | 120 | 4: 3 | 0,019 |
HQVGA | 240 | 160 | 3: 2 | 0,038 |
256 | 160 | 16:10 | 0,043 | |
QVGA | 320 | 240 | 4: 3 | 0,077 |
WQVGA | 384 | 240 | 16:10 | 0,092 |
WQVGA | 360 | 240 | 3: 2 | 0,086 |
WQVGA | 400 | 240 | 5: 3 | 0,096 |
HVGA | 480 | 320 | 3: 2 | 0,154 |
VGA | 640 | 480 | 4: 3 | 0,307 |
WVGA | 768 | 480 | 16:10 | 0,368 |
WVGA | 720 | 480 | 3: 2 | 0,345 |
WVGA | 800 | 480 | 5: 3 | 0,384 |
FWVGA | ≈854 | 480 | 16: 9 | 0,410 |
SVGA | 800 | 600 | 4: 3 | 0,480 |
WSVGA | 1024 | 576 | 16: 9 | 0,590 |
WSVGA | 1024 | 600 | 128: 75 | 0,614 |
DVGA | 960 | 640 | 3: 2 | 0,614 |
160 × 120 (QQVGA)
Четверть-QVGA ( QQVGA или qqVGA ) означает разрешение 160 × 120 или 120 × 160 пикселей, обычно используемое в дисплеях портативных устройств. Термин Quarter-QVGA означает разрешение, равное одной четвертой числа пикселей в QVGA- дисплее (половина числа пикселей по вертикали и половина числа пикселей по горизонтали), что само по себе составляет одну четверть числа пикселей в дисплее VGA .
Аббревиатура qqVGA может использоваться для отличия четверти от четырехугольника , как и qVGA .
240 × 160 (HQVGA)
Half-QVGA обозначает разрешение экрана дисплея 240 × 160 или 160 × 240 пикселей, как показано на Game Boy Advance . Это разрешение составляет половину от QVGA , что само по себе составляет четверть от VGA , то есть 640 × 480 пикселей.
320 × 240 (QVGA)
QVGA по сравнению с VGAЧетверть VGA ( QVGA или qVGA ) — популярный термин для компьютерного дисплея с разрешением экрана 320 × 240 . Дисплеи QVGA чаще всего использовались в мобильных телефонах , персональных цифровых помощниках (КПК) и некоторых портативных игровых консолях . Часто дисплеи имеют « портретную » ориентацию (т. Е. Выше, чем ширина, в отличие от « альбомной ») и обозначаются как 240 × 320 .
Название происходит от того, Q uarter от 640 × 480 максимальное разрешение оригинального IBM VGA дисплейной технологии, которая стала де — факто отраслевым стандартом в конце 1980 — х годов. QVGA не является стандартным режимом, предлагаемым VGA BIOS , хотя VGA и совместимые наборы микросхем поддерживают режим X размера QVGA . Этот термин относится только к разрешению дисплея, поэтому сокращенный термин QVGA или Quarter VGA более подходит для использования.
Разрешение QVGA также используется в цифровом записывающем оборудовании в качестве режима низкого разрешения, требующего меньшего объема памяти для хранения данных, чем более высокие разрешения, обычно в цифровых фотоаппаратах с возможностью записи видео и некоторых мобильных телефонах . Каждый кадр представляет собой изображение размером 320 × 240 пикселей. Видео QVGA обычно записывается с частотой 15 или 30 кадров в секунду . Режим QVGA описывает размер изображения в пикселях, обычно называемый разрешением; это разрешение поддерживают многочисленные форматы видеофайлов .
Хотя QVGA имеет более низкое разрешение, чем VGA, при более высоких разрешениях префикс «Q» обычно означает четырехкратное или четырехкратное увеличение разрешения дисплея (например, QXGA в четыре раза выше разрешения, чем XGA ). Чтобы отличить четверть от четырехугольника , строчная буква «q» иногда используется для «четверти» и прописная «Q» для «четырехугольника» по аналогии с префиксами SI, такими как m / M и p / P, но это не является постоянным использованием.
Некоторые примеры устройств, использующих разрешение дисплея QVGA, включают Samsung i5500 , LG Optimus L3 -E400, Galaxy Fit , Y и Pocket , HTC Wildfire , Sony Ericsson Xperia X10 Mini и mini pro и нижний экран Nintendo 3DS .
400 × 240 (WQVGA)
H (пикс.) | V (пикс.) | H: V | В × В (Mpx) |
---|---|---|---|
360 | 240 | 15:10 | 0,086 |
376 | 240 | 4,7: 3 | 0,0902 |
384 | 240 | 16:10 | 0,0922 |
400 | 240 | 15: 9 | 0,0960 |
428 | 240 | 16: 9 | 0,103 |
432 | 240 | 18:10 | 0,104 |
480 | 270 | 16: 9 | 0,130 |
480 | 272 | 16: 9 | 0,131 |
Широкий QVGA или WQVGA — это любое разрешение дисплея, имеющее ту же высоту в пикселях, что и QVGA, но шире. Это определение согласуется с другими «широкими» версиями компьютерных дисплеев.
Поскольку QVGA имеет ширину 320 пикселей и высоту 240 пикселей (соотношение сторон 4: 3), разрешение экрана WQVGA может составлять 360 × 240 (соотношение сторон 3: 2), 384 × 240 (соотношение сторон 16:10), 400 × 240 (5: 3 — например, экран Nintendo 3DS или максимальное разрешение на YouTube при 240p), 428 × 240 (соотношение ≈16: 9) или 432 × 240 (соотношение сторон 18:10). Как и в случае с WVGA , точное соотношение n : 9 затруднительно из-за того, как контроллеры VGA внутренне обрабатывают пиксели. Например, при использовании графических комбинаторных операций с пикселями контроллеры VGA будут использовать 1 бит на пиксель. Поскольку к битам нельзя получить доступ по отдельности, а только кусками по 16 или даже более высокой степенью 2, это ограничивает горизонтальное разрешение до 16-пиксельной детализации, т. Е. Горизонтальное разрешение должно делиться на 16. В случае соотношения 16: 9 при высоте 240 пикселей горизонтальное разрешение должно быть 240/9 × 16 = 426. 6 , ближайшее кратное 16 равно 432.
WQVGA также использовался для описания дисплеев высотой не 240 пикселей, например, шестнадцатых дисплеев HD1080 с шириной 480 пикселей и высотой 270 или 272 пикселей. Это может быть связано с тем, что WQVGA имеет ближайшую высоту экрана.
Разрешения WQVGA обычно использовались в мобильных телефонах с сенсорным экраном , например 400 × 240 , 432 × 240 и 480 × 240 . Напр
разрешений — Django REST framework
GitHub Следующие Предыдущая Поиск Фреймворк Django REST- Главная
- Учебник
- Быстрый старт
- 1 — Сериализация
- 2 — Запросы и ответы
- 3 — Просмотры на основе классов
- 4 — Аутентификация и разрешения
- 5 — Отношения и гиперссылки API
- 6 — Viewsets и маршрутизаторы
- Руководство API
- Запросы
- Ответы
- Просмотры
- Общие представления
- Наборы просмотров
- Маршрутизаторы
- Парсеры
- Рендереры
- Сериализаторы
- Поля сериализатора
- Отношения сериализатора
- Валидаторы
- Аутентификация
- Разрешения
- Кеширование
- Дросселирование
- Фильтрация
Настройка разрешений | Kentico 11 Документация
Разрешения позволяют управлять доступом к определенным разделам интерфейса администрирования (приложениям), страницам в дереве содержимого и настраиваемым таблицам.
Назначение разрешений
Вы можете назначить разрешения в приложении Permissions . Разрешения можно назначать только ролям, а не отдельным пользователям.
Помимо глобальных ролей, определенных для всех сайтов в системе, каждый веб-сайт имеет свой собственный набор ролей. Этим ролям назначаются разрешения , что означает, что каждый веб-сайт может при необходимости использовать различную конфигурацию разрешений ролей.
Сайт
Используя раскрывающийся список Сайт , выберите сайт, для ролей которого вы хотите настроить разрешения.После выбора сайта доступные роли появятся в списке ниже.
Разрешения для
Используя первый раскрывающийся список «Разрешение для », вы можете выбрать один из следующих трех типов разрешений:
- Модули — разрешения для действий, связанных с конкретными функциями Kentico.
- Типы страниц — разрешений, применяемых ко всем страницам определенного типа. Эти разрешения представляют собой один уровень трехуровневой иерархии разрешений страниц, как описано в разделе Настройка разрешений страницы.
- Пользовательские таблицы — разрешения для пользовательских таблиц.
Затем вы можете выбрать соответствующий модуль, тип страницы или настраиваемую таблицу из второго раскрывающегося списка и предоставить разрешения ролям с помощью флажков.
Если у вас нет уровня привилегий глобального администратора, вы можете встретить неактивные флажки:
- Выбранный неактивный флажок — разрешение предоставлено роли, и только глобальные администраторы могут изменять Это.
- Флажок отключен серым — разрешение не предоставлено роли, и только глобальные администраторы могут его изменить.
Эти выделенные серым цветом флажки также сопровождаются значком предупреждения () в строке заголовка таблицы, указывающим, что разрешение может быть предоставлено ролям только глобальными администраторами.
Настройка разрешений | Kentico 10 Документация
Разрешения позволяют управлять доступом к определенным разделам интерфейса администрирования (приложениям), страницам в дереве содержимого и настраиваемым таблицам.
Назначение разрешений
Вы можете назначить разрешения в приложении Permissions . Разрешения можно назначать только ролям, а не отдельным пользователям.
Помимо глобальных ролей, определенных для всех сайтов в системе, каждый веб-сайт имеет свой собственный набор ролей. Этим ролям назначаются разрешения , что означает, что каждый веб-сайт может при необходимости использовать различную конфигурацию разрешений ролей.
Сайт
Используя раскрывающийся список Сайт , выберите сайт, для ролей которого вы хотите настроить разрешения.После выбора сайта доступные роли появятся в списке ниже.
Разрешения для
Используя первый раскрывающийся список «Разрешение для », вы можете выбрать один из следующих трех типов разрешений:
- Модули — разрешения для действий, связанных с конкретными функциями Kentico.
- Типы страниц — разрешения, применяемые ко всем страницам определенного типа. Эти разрешения представляют собой один уровень трехуровневой иерархии разрешений страниц, как описано в разделе Настройка разрешений страницы.
- Пользовательские таблицы — разрешения для пользовательских таблиц.
Затем вы можете выбрать соответствующий модуль, тип страницы или настраиваемую таблицу из второго раскрывающегося списка и предоставить разрешения ролям с помощью флажков.
Если у вас нет уровня привилегий глобального администратора, вы можете встретить выделенные серым цветом флажки:
- Выбранный серый флажок — разрешение предоставлено роли, и только глобальные администраторы могут изменять Это.
- Флажок отключен серым — разрешение не предоставлено роли, и только глобальные администраторы могут его изменить.
Эти выделенные серым цветом флажки также сопровождаются значком предупреждения () в строке заголовка таблицы, указывающим, что разрешение может быть предоставлено ролям только глобальными администраторами.