Разное

Разложение в ряд тейлора функции двух переменных: Формула Тейлора для функции двух переменных. Контрольные онлайн

Теория рядов

Теория рядов
  

Теория рядов. Воробьев Н. Н. 4 изд., перераб. и доп., Наука, Главная редакция физико-математической литературы, М., 1979, — 408 с.

В книге излагаются основы теории числовых рядов и функциональных рядов, в том числе степенных рядов и рядов Фурье. Первая часть курса составлена в точном соответствии с разделом «Ряды» программы по высшей математике для инженерно-технических специальностей высших учебных заведений. Ее можно использовать не только как учебное пособие для слушателей курса лекций, но и при самостоятельной работе над предметом. Вторая часть представляет собой цикл очерков, посвященных более глубоким вопросам теории рядов,



Оглавление

ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ
Часть I
ГЛАВА 1. ПРОГРЕССИИ
§ 2. Геометрические прогрессии
§ 3. Бесконечные прогрессии; их сходимость и расходимость
§ 4. Элементарные преобразования прогрессий
§ 5. Функциональные прогрессии: область сходимости; равномерная сходимость
§ 6. Почленное интегрирование прогрессий
§ 7. Почленное дифференцирование прогрессий
§ 8. Прогрессии с комплексными членами
ГЛАВА 2. ЧИСЛОВЫЕ РЯДЫ. ОСНОВНЫЕ ПОНЯТИЯ. ОСНОВНЫЕ ТЕОРЕМЫ О СХОДИМОСТИ
§ 2. Определение числового ряда и его сходимости
§ 3. Остаток ряда
§ 4. Принцип сходимости Коши
§ 5. Критерий Коши сходимости рядов
§ 6. Необходимый признак сходимости ряда
§ 7. Желательность систематической теории
§ 8. Свойства сходящихся рядов, подобные свойствам сумм
§ 9. Дальнейшие свойства рядов
ГЛАВА 3. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ
§ 1. Признаки сходимости рядов
§ 2. Признаки сравнения
§ 3. Интегральный признак сходимости Маклорена — Коши
§ 4. Применения интегрального признака сходимости
§ 5. Сравнительная оценка различных признаков сходимости
§ 6. Признак сходимости Даламбера
§ 7. Признак сходимости Коши
§ 8. Чувствительность признаков сходимости Даламбера и Коши
ГЛАВА 4. ЗНАКОПЕРЕМЕННЫЕ РЯДЫ
§ 2. Абсолютная сходимость и расходимость
§ 3. Возможность переставлять члены в абсолютно сходящихся рядах
§ 4. Условно сходящиеся знакопеременные ряды
§ 5. Умножение абсолютно сходящихся рядов
§ 6. Признак сходимости Лейбница
§ 7. Существенность условий признака сходимости Лейбница
ГЛАВА 5. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
§ 2. Область сходимости функционального ряда
§ 3. Сходимость последовательности функций. Основные определения
§ 4. Предел последовательности непрерывных функций
§ 5. Переход к пределу под знаком интеграла
§ 6. Переход к пределу под знаком производной
§ 7. Определение равномерной сходимости функционального ряда и признак Вейерштрасса
§ 8. Непрерывность суммы равномерно сходящегося ряда с непрерывными членами
§ 9. Почленное интегрирование функциональных рядов
§ 10. Почленное дифференцирование функциональных рядов
ГЛАВА 6. СТЕПЕННЫЕ РЯДЫ. ОБЩИЕ ВОПРОСЫ
§ 2. Теорема Абеля
§ 3. Круг сходимости ряда
§ 4. Вещественный степенной ряд и его интервал сходимости
§ 5. Равномерная сходимость ряда в круге его сходимости
§ 6. Вещественные ряды
§ 7. Комплексные ряды
§ 8. Разложение функций в степенные ряды
§ 9. Формула Тейлора
§ 10. Ряды Тейлора и Маклорена
ГЛАВА 7. СТЕПЕННЫЕ РЯДЫ. ПРИМЕРЫ И ПРИЛОЖЕНИЯ
§ 2. Разложения в ряды Маклорена гиперболических функций ch x и sh x
§ 3. Разложения в ряды Маклорена тригонометрических функций cos x и sin x
§ 4. Показательная функция с комплексным значением показателя
§ 5. Формулы Эйлера
§ 6. Тригонометрические функции от комплексного значения аргумента
§ 7. Гиперболические функции от комплексного значения аргумента
§ 8. Вычисление значений функций при помощи ряда Маклорена
§ 9. Биномиальный ряд
§ 10. Приложения биномиального ряда
§ 11. Разложение в ряд Маклорена логарифмической функции
§ 12. Приближенное вычисление определенных интегралов при помощи степенных рядов
§ 13. Приближенное интегрирование дифференциальных уравнений при помощи степенных рядов
ГЛАВА 8. ОРТОГОНАЛЬНЫЕ И ОРТОНОРМАЛЬНЫЕ СИСТЕМЫ ФУНКЦИЙ
§ 2. Векторы и функции
§ 3. Нормированные и ортогональные функции
§ 4. Нормированные и ортогональные системы функций
§ 5. Нормировка систем функций
§ 6. Разложение по системам функций
ГЛАВА 9. РЯДЫ ФУРЬЕ
§ 1. Ряды и коэффициенты Фурье
§ 2. Условия Дирихле и теорема о разложении функции в ряд Фурье
§ 3. Разложение периодических функций в ряд Фурье
§ 4. Физическое истолкование разложения функции в тригонометрический ряд Фурье
§ 5. Разложение функции f(x) = x
§ 6. Сдвиг сегмента разложения
§ 7. Изменение длины сегмента разложения
§ 8. Четные и нечетные функции
§ 9. Разложение четной функции в ряд Фурье
§ 10. Разложение нечетной функции в ряд Фурье
§ 11. Разложение ряд Фурье функций на сегменте от 0 до пи
§ 12. Комплексная форма записи ряда Фурье
§ 13. Разложение в комплексный ряд Фурье
§ 14. Характер сходимости рядов Фурье
ГЛАВА 10. УРАВНЕНИЕ СВОБОДНЫХ МАЛЫХ КОЛЕБАНИЙ СТРУНЫ С ЗАКРЕПЛЕННЫМИ КОНЦАМИ
§ 2. Начальные и граничные условия
§ 3. Метод разделения переменных
§ 4. Использование граничных условий. Собственные функции и собственные значения
§ 5. Использование начальных условий
ГЛАВА 11. ИНТЕГРАЛ ФУРЬЕ
§ 1. Представление функций интегралом Фурье
§ 2. Простейшие достаточные условия представимости функции интегралом Фурье
§ 3. Интеграл Фурье для четных функций
§ 4. Интеграл Фурье для нечетных функций
§ 5. Комплексная форма интеграла Фурье
§ 6. Понятие о преобразовании Фурье
§ 7. Косинус-преобразование Фурье
§ 8. Синус-преобразование Фурье
§ 9. Спектральная функция
Часть II
§ 1. Признак сходимости Куммера
§ 2. Признак сходимости Раабе
§ 3. Признак сходимости Бертрана
§ 4. Признак сходимости Гаусса
§ 5. Сходимость знакопеременных рядов
§ 6. Признак сходимости Дирихле
ГЛАВА 13. ДВОЙНЫЕ РЯДЫ
§ 1. Определение двойного ряда
§ 2. Сходимость двойных рядов
§ 3. Критерии сходимости двойных рядов. Теорема Маркова
§ 4. Свойства двойных рядов и признаки сходимости
§ 5. Абсолютная сходимость двойных рядов
§ 6. Двойные функциональные ряды
§ 7. Двойные степенные ряды
§ 8. Разложение функций двух переменных в двойные ряды Тейлора и Маклорена
§ 9. Ортогональные и ортонормальные системы функций от двух переменных
§ 10. Двойные ряды Фурье
ГЛАВА 14. СУММИРОВАНИЕ СХОДЯЩИХСЯ РЯДОВ
§ 2. Линейные преобразования рядов
§ 3. Теорема Абеля и почленное дифференцирование и интегрирование рядов
§ 4. Последовательности разностей
§ 5. Преобразование рядов по Эйлеру
§ 6. Преобразование рядов по Куммеру
ГЛАВА 15. СУММИРОВАНИЕ РАСХОДЯЩИХСЯ РЯДОВ
§ 1. Расходящиеся геометрические прогрессии
§ 2. Суммирующие функции
§ 3. Суммирование по Пуассону — Абелю
§ 4. Линейность и регулярность суммирования по Пуассону — Абелю
§ 5. Суммируемость рядов по Пуассону — Абелю и их абсолютная сходимость
§ 6. Теорема Таубера
§ 7. Суммирование по Чезаро
§ 8. Соотношение между сходимостью по Чезаро и по Пуассону — Абелю
§ 9. Суммирование по Эйлеру
ГЛАВА 16. СХОДИМОСТЬ РЯДОВ ФУРЬЕ
§ 2. Исследование двух интегралов
§ 3. Исследование одного класса интегралов
§ 4. Доказательство теоремы Дирихле
§ 5. Теорема Фурье
§ 6. Коэффициенты Фурье разрывных функций
§ 7. Скорость сходимости рядов Фурье
§ 8. Улучшение сходимости рядов Фурье по методу выделения особенностей
§ 9. О равномерной сходимости рядов Фурье
§ 10. Неравномерная сходимость последовательностей непрерывных функций
§ 11. Поведение рядов Фурье функций в точках их разрыва. Явление Гиббса
§ 12. Экстремальное свойство сумм Фурье
§ 13. Суммирование рядов Фурье по Чезаро. Теорема Фейера
§ 14. Равенство Парсеваля
§ 15. Теорема Вейерштрасса
ГЛАВА 17. ПРИМЕНЕНИЕ РЯДОВ ФУРЬЕ В ТЕОРИИ ИЗГИБА БАЛОК
§ 2. Изгиб балки
§ 3. Свободно опертая балка
§ 4. Первая возможность ограничиться двукратным дифференцированием
§ 5. Случай сосредоточенной нагрузки
§ 6. Прогиб балки от распределенной нагрузки
§ 7. Прогиб от сосредоточенного момента
§ 8. Статически неопределимая балка
§ 9. Сложный изгиб балки
§ 10. Балка на упругом основании
§ 11. Вторая возможность ограничиться двукратным дифференцированием. Потенциальная энергия изгиба балки
§ 12. Потенциальная энергия изгиба балки в случае нескольких нагрузок
§ 13. Функции прогиба с ортогональными вторыми производными
§ 14. Свободно опертая нагруженная балка
§ 15. Работа продольных сил при сложном изгибе балки
§ 16. Общий случай изгиба балки
§ 17. Общий случай изгиба свободно опертой балки
§ 18. Изгиб симметрично нагруженной балки, жестко заделанной по концам
§ 19. Функция прогиба симметрично загруженной балки с жестко заделанными концами

Дифференциальное и интегральное исчисления для втузов, т.1

  

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т.1: Учебное пособие для втузов.— 13-е изд.— М.: Наука. Главная редакция физико-математической литературы, 1985. — 432 с.

Хорошо известное учебное пособие по математике для втузов с достаточно широкой математической подготовкой.

Первый том включает разделы: введение в анализ, дифференциальное исчисление (функций одной и нескольких переменных), неопределенный и определенный интегралы.

Настоящее издание не отличается от предыдущего (1978 г.).

Для студентов высших технических учебных заведений.



Оглавление

ПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮ
ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ
ГЛАВА I. ЧИСЛО. ПЕРЕМЕННАЯ. ФУНКЦИЯ
§ 1. Действительные числа.
§ 2. Абсолютная величина действительного числа
§ 3. Переменные и постоянные величины
§ 4. Область изменения переменной величины
§ 5. Упорядоченная переменная величина. Возрастающая и убывающая переменные величины Ограниченная переменная величина
§ 6. Функция
§ 7. Способы задания функции
§ 8. Основные элементарные функции. Элементарные функции
§ 9. Алгебраические функции
§ 10. Полярная система координат
Упражнения к главе I
ГЛАВА II. ПРЕДЕЛ. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ
§ 1. Предел переменной величины. Бесконечно большая переменная величина
§ 2. Предел функции
§ 3. Функция, стремящаяся к бесконечности. Ограниченные функции
§ 4. Бесконечно малые и их основные свойства
§ 5. Основные теоремы о пределах
§ 6. Предел функции (sin x)/x при x->0
§ 7. Число e
§ 8. Натуральные логарифмы
§ 9. Непрерывность функций
§ 10. Некоторые свойства непрерывных функций
§ 11. n при n целом и положительном
§ 6. Производные от функций y = sinx; y = cosx
§ 7. Производные постоянной, произведения постоянной на функцию, суммы, произведения, частного
§ 8. Производная логарифмической функции
§ 9. Производная от сложной функции
§ 10. Производные функций y = tgx, y = ctgx, y = ln|x|
§ 11. Неявная функция и ее дифференцирование
§ 12. Производные степенной функции при любом действительном показателе, показательной функции, сложной показательной функции
§ 13. Обратная функция и ее дифференцирование
§ 14. Обратные тригонометрические функции и их дифференцирование
§ 15. Таблица основных формул дифференцирования
§ 16. Параметрическое задание функции
§ 17. Уравнения некоторых кривых в параметрической форме
§ 18. Производная функции, заданной параметрически
§ 19. Гиперболические функции
§ 20. Дифференциал
§ 21. Геометрическое значение дифференциала Рассмотрим функцию
§ 22. Производные различных порядков
§ 23. x, sin x, cos x
Упражнения к главе IV
ГЛАВА V. ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ
§ 2. Возрастание и убывание функции
§ 3. Максимум и минимум функций
§ 4. Схема исследования дифференцируемой функции на максимум и минимум с помощью первой производной
§ 5. Исследование функции на максимум и минимум с помощью второй производной
§ 6. Наибольшее и наименьшее значения функции на отрезке
§ 7. Применение теории максимума и минимума функций к решению задач
§ 8. Исследование функции на максимум и минимум с помощью формулы Тейлора
§ 9. Выпуклость и вогнутость кривой. Точки перегиба
§ 10. Асимптоты
§ 11. Общий план исследования функций и построения графиков
§ 12. Исследование кривых, заданных параметрически
Упражнения к главе V
ГЛАВА VI. КРИВИЗНА КРИВОЙ
§ 1. Длина дуги и ее производная
§ 2. Кривизна
§ 3. Вычисление кривизны
§ 4. Вычисление кривизны линии, заданной параметрически
§ 5. Вычисление кривизны линии, заданной уравнением в полярных координатах
§ 6. Радиус и круг кривизны. Центр кривизны. Эволюта и эвольвента
§ 7. Свойства эволюты
§ 8. Приближенное вычисление действительных корней уравнения
Упражнения к главе VI
ГЛАВА VII. КОМПЛЕКСНЫЕ ЧИСЛА, МНОГОЧЛЕНЫ
§ 1. Комплексные числа. Исходные определения
§ 2. Основные действия над комплексными числами
§ 3. Возведение комплексного числа в степень и извлечение корня из комплексного числа
§ 4. Показательная функция с комплексным показателем и ее свойства
§ 5. Формула Эйлера. Показательная форма комплексного числа
§ 6. Разложение многочлена на множители
§ 7. О кратных корнях многочлена
§ 8. Разложение многочлена на множители в случае комплексных корней
§ 9. Интерполирование. Интерполяционная формула Лагранжа
§ 10. Интерполяционная формула Ньютона
§ 11. Численное дифференцирование
§ 12. О наилучшем приближении функций многочленами. Теория Чебышева
Упражнения к главе VII
ГЛАВА VIII. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. Определение функции нескольких переменных
§ 2. Геометрическое изображение функции двух переменных
§ 3. Частное и полное приращение функции
§ 4. Непрерывность функции нескольких переменных
§ 5. Частные производные функции нескольких переменных
§ 6. Геометрическая интерпретация частных производных функции двух переменных
§ 7. Полное приращение и полный дифференциал
§ 8. Применение полного дифференциала в приближенных вычислениях
§ 9. Приложение дифференциала к оценке погрешности при вычислениях
§ 10. Производная сложной функции. Полная производная. Полный дифференциал сложной функции
§ 11. Производная от функции, заданной неявно
§ 12. Частные производные различных порядков
§ 13. Поверхности уровня
§ 14. Производная по направлению
§ 15. Градиент
§ 16. Формула Тейлора для функции двух переменных
§ 17. Максимум и минимум функции нескольких переменных
§ 18. Максимум и минимум функции нескольких переменных, связанных данными уравнениями (условные максимумы и минимумы)
§ 19. Получение функции на основании экспериментальных данных по методу наименьших квадратов
§ 20. Особые точки кривой
Упражнения к главе VIII
ГЛАВА IX. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ГЕОМЕТРИИ В ПРОСТРАНСТВЕ
§ 1. Уравнения кривой в пространстве
§ 2. Предел и производная векторной функции скалярного аргумента. Уравнение касательной к кривой. Уравнение нормальной плоскости
§ 3. Правила дифференцирования векторов (векторных функций)
§ 4. Первая и вторая производные вектора по длине дуги. Кривизна кривой. Главная нормаль. Скорость и ускорение точки в криволинейном движении
§ 5. Соприкасающаяся плоскость. Бинормаль. Кручение.
§ 6. Касательная плоскость и нормаль к поверхности
Упражнения к главе IX
ГЛАВА X. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Первообразная и неопределенный интеграл
§ 2. Таблица интегралов
§ 3. Некоторые свойства неопределенного интеграла
§ 4. Интегрирование методом замены переменной или способом подстановки
§ 5. Интегралы от некоторых функций, содержащих квадратный трехчлен
§ 6. Интегрирование по частям
§ 7. Рациональные дроби. Простейшие рациональные дроби и их интегрирование
§ 8. Разложение рациональной дроби на простейшие
§ 9. Интегрирование рациональных дробей
§ 10. Интегралы от иррациональных функций
§ 11. Интегралы вида …
§ 12. Интегрирование некоторых классов тригонометрических функций
§ 13. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок
§ 14. О функциях, интегралы от которых не выражаются через элементарные функции
Упражнения к главе X
ГЛАВА XI. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. Постановка задачи. Нижняя и верхняя интегральные суммы
§ 2. Определенный интеграл. Теорема о существовании определенного интеграла
§ 3. Основные свойства определенного интеграла
§ 4. Вычисление определенного интеграла. Формула Ньютона — Лейбница
§ 5. Замена переменной в определенном интеграле
§ 6. Интегрирование по частям
§ 7. Несобственные интегралы
§ 8. Приближенное вычисление определенных интегралов
§ 9. Формула Чебышева
§ 10. Интегралы, зависящие от параметра. Гамма-функция
§ 11. Интегрирование комплексной функции действительной переменной
Упражнения кглаве XI
ГЛАВА XII. ГЕОМЕТРИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
§ 1. Вычисление площадей в прямоугольных координатах
§ 2. Площадь криволинейного сектора в полярных координатах
§ 3. Длина дуги кривой
§ 4. Вычисление объема тела по площадям параллельных сечений
§ 5. Объем тела вращения
§ 6. Площадь поверхности тела вращения
§ 7. Вычисление работы с помощью определенного интеграла
§ 8. Координаты центра масс
§ 9. Вычисление момента инерции линии, круга и цилиндра с помощью определенного интеграла
Упражнения к главе XII

многомерное исчисление — ряд Тейлора для функции двух переменных

спросил

Изменено 2 года, 1 месяц назад

Просмотрено 3к раз

$\begingroup$

Меня интересует расширение до 3-го Ордена Тейлора. 9{\mkern-5mu3}\cdot f$$

$\endgroup$

1

Введение в теорему Тейлора для функций многих переменных

Помните теорему Тейлора об исчислении одной переменной. Дана одна переменная функцию $f(x)$, вы можете подобрать ее полиномом вокруг $x=a$.

Например, наилучшим линейным приближением для $f(x)$ является \начать{выравнивать*} f(x) \ приблизительно f(a) + f\,'(a)(x-a). \конец{выравнивание*} Это линейное приближение соответствует $f(x)$ (показано зеленым цветом ниже) с линия (показана синим цветом) через $x=a$, которая соответствует наклону $f$ в $a$. 93 + \cdots. \конец{выравнивание*} Важным моментом является то, что этот полином Тейлора хорошо аппроксимирует $f(x)$ для $x$ вблизи $a$.

Мы хотим обобщить многочлен Тейлора на (скалярнозначный) функции нескольких переменных: \начать{выравнивать*} f(\vc{x})= f(x_1,x_2, \ldots, x_n). \конец{выравнивание*}

Мы уже знаем наилучшее линейное приближение к $f$. Он включает производную, \начать{выравнивать*} f(\vc{x}) \ приблизительно f(\vc{a}) + Df(\vc{a}) (\vc{x}-\vc{a}). \label{eq:firstorder} \конец{выравнивание*} где $Df(\vc{a})$ — матрица частных производных. Линейное приближение представляет собой полином Тейлора первого порядка. 92. \конец{выравнивание*} Для функции многих переменных $f(\vc{x})$ аналогичный вторая производная?

Поскольку $f(\vc{x})$ скалярная, первая производная есть $Df(\vc{x})$, матрица $1 \times n$, которую мы можем рассматривать как $n$-мерную вектор-функцию от $n$-мерного вектора $\vc{x}$. Для второй производной от $f(\vc{x})$ можно взять матрицу частных производные функции $Df(\vc{x})$. Мы могли бы написать это как $DDf(\vc{x})$ на данный момент. Эта секунда производная матрица — это $n \times n$ матрица, называемая Матрица Гессе из $f$. Обозначим его через $Hf(\vc{x})$, \начать{выравнивать*} Hf(\vc{x}) = DDf(\vc{x}). \конец{выравнивание*}

Когда $f$ является функцией нескольких переменных, вторая производная член ряда Тейлора будет использовать гессиан $Hf(\vc{a})$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *