Разное

Матрица в фотоаппарате: Какое оптимальное количество мегапикселей должно быть в фотоаппарате

Содержание

Какое оптимальное количество мегапикселей должно быть в фотоаппарате

Производители часто указывают мегапиксели, как одну из основных характеристик фотоаппаратов. Новые модели соревнуются в их количестве. Если раньше на кропнутых зеркальных фотокамерах максимальное число мегапикселей равнялось 18, сейчас это число доходит до 24. Что такое мегапиксели в фотоаппарате, на что влияет их количество, какой показатель является рабочим, и может ли ухудшить качество фотографии их чрезмерное количество.

Что такое мегапиксели и их размер

Один мегапиксель (Мп) состоит из миллиона пикселей, маленьких квадратиков, которые выглядят как крошечные точки. Фотография представляет собой сплошную сетку, сотканную из пикселей. Достаточное количество этих квадратиков улучшает качество изображения, увеличивает его разрешение. Ведь пиксель – это основной элемент, из которого состоит цифровое изображение. Не существует величины меньше пикселя. Например, миллипикселя или 0,5 пикселя. Однако они могут отличаться по размеру.

Большинство современных фотоаппаратов имеет достаточное количество мегапикселей. Как правило, не меньше 15. Когда в фотоаппаратах было 3-4 Мп, их увеличение, хотя бы на один, было очень заметно. Сейчас имеющегося числа вполне достаточно для печати фотографий очень большого размера, и новое увеличение этого показателя больше похоже на маркетинговый ход, чем на необходимость.

На что влияют мегапиксели

От количества Мп в матрице фотоаппарата по сути зависит качество распечатанных фотографий. Снимки большой выглядят детализированней при достаточном количестве мегапикселей. Однако это не единственный показатель, нужный для печати необычно крупных фотографий. Также важны характеристики сенсора фотокамеры и настройки диафрагмы (апертуры).

Важно знать, что пиксели могут отличаться размером. Например, в одной камере может быть 12 Мп большого размера, а в другой – 24, но более маленьких. Слишком мелкие пиксели способны вобрать в себя только небольшое количество света. Оставшийся свет перемещается к соседним пикселям, создавая на фотографии неприятный цветовой шум. Поэтому важно не только количество мегапикселей, но и размер самой матрицы. Если последняя слишком маленькая и на нее пытаются вместить как можно больше пикселей, качество фото только ухудшится. Чем больше размер матрицы, тем больше света она воспринимает. В итоге снимки имеют больше деталей и больший угол обзора.

Какое оптимальное количество

Достаточное число пикселей зависит от потребностей пользователя фотоаппарата. Также стоит помнить, что на качество влияют многие технические показатели фотоаппарата, в том числе размер матрицы, выбранный объектив и, конечно, настройки камеры.

Чем больше разрешение матрицы, тем качественнее получатся напечатанные в большом размере снимки и тем больше возможностей для последующей обработки фотографии в фоторедакторе.

  • Тем, кто в принципе не печатает и не обрабатывает фотографии, а смотрит их только на цифровых устройствах и выкладывает в сеть, вполне хватит даже 5 Мп;
  • Если снимки подвергаются пост обработке, их разрешение несколько уменьшается. Особенно при кадрировании. Значит, чтобы обработать фото и сохранить приемлемое качество для их просмотра на компьютере и печати фотографий небольшого размера, нужен фотоаппарат с 7 Мп. При таком показателе разрешение снимков будет около 3072 на 2304 пикселей. Значит, можно будет смело их обрабатывать, убирать ненужные объекты по краям, не ухудшая итоговые кадры. После этого можно распечатать снимки размером 10 на 15 и даже 20 на 30;
  • Тем, кто предпочитает более детализированные снимки, лучше приобретать фотокамеры с разрешением матрицы не менее 12 Мп. Такой фотоаппарат позволит получать кадры, в которых видна каждая деталь, а затем увеличивать и кадрировать их при необходимости. Однако такие фотокамеры стоят дороже, поэтому стоит взвесить все за и против. А также решить, так ли необходима сильная детализация для любительской съемки.

Профессионалам, безусловно, нужны камеры с разрешением не менее 12 Мп. А вот показатель разрешения больше 20 мегапикселей не особенно востребован даже в профессиональных кругах. Это больше рекламные трюки производителей.

Более того, фотографы, проводившие сравнение, указывают на избыточность 24 мегапикселей для фотоаппаратов с кропнутой матрицей. Объективы не справляются с таким количеством пикселей, появляется больше цифрового шума, кадры медленнее обрабатываются из-за большого веса. К тому же, на снимках при 12 и 24 Мп практически идентичная детализация.

Стоит ли гнаться за большим количеством мегапикселей

Профессионалы не советуют гнаться за максимальным количеством пикселей в фотоаппарате. Важнее определиться со своими целями. Для чего приобретается фотокамера: для бытовой съемки, работы в газете или журнале, участии в выставках, съемке портретов, репортажей или торжеств. Для каждой цели понадобится свое количество мегапикселей матрицы фотоаппарата.

Собираясь создавать фото для семейного альбома и соцсетей, не стоит платить лишнее за технику с огромным разрешением снимков. К тому же, на качество больше повлияет физический размер матрицы. Именно на этот показатель лучше обратить свое внимание. При этом техника с большой матрицей будет дороже, тяжелее, объемнее, чем простой любительский компактный фотоаппарат. Такую технику неудобно будет постоянно носить с собой, чтобы запечатлеть неожиданно возникшие интересные кадры.

Вредит ли большое число мегапикселей качеству снимков

Увеличение разрешения матрицы может ухудшить резкость кадров даже при использовании качественного объектива.

Это звучит странно, но имеет логическое объяснение. Если физический размер матрицы не увеличивается, а количество мегапикселей становится больше, их размер становится меньше. Это делает их менее чувствительными к свету и повышает их нагрев друг от друга, увеличивая количество цифрового шума. Хотя, технологии не стоят на месте и производители научились снижать уровень шума даже при уменьшении размеров пикселей.

Однако есть и другая опасность – появление дифракции. При прохождении потока света через малое отверстие диафрагмы он как будто распыляется, как спрей. Чем сильнее закрыта апертура (диафрагма), тем под большим углом происходит это распыление. Так четкая точка становится размытой. И чем меньше открыта диафрагма, тем размытие становится сильнее. Хотя обычно закрытая диафрагма дает максимально четкую детализацию.

Мегапиксели в фотоаппарате отвечают за разрешение фотографий. Выбирая технику, следует заранее решить, для каких целей она будет использоваться. Если в планах фотографа нет печати фотографий очень крупного размера, в профессиональных целях, или серьезной постобработки в фоторедакторе, то количество пикселей не играет особой роли. В таком случае, возможно, не стоит переплачивать за более дорогие модели. При этом важно обратить внимание на другие технические характеристики фотоаппарата. В первую очередь на размер матрицы. А также научиться его правильно настраивать. Так, даже при среднем количестве мегапикселей будут получаться интересные и качественные фотографии.

Физический размер матрицы фотоаппарата

Так как матрица (фотосенсор) состоит из множества пикселей, то физический размер матрицы фотоаппарата зависит от размеров самого пикселя и их количества, то-есть от разрешения матрицы. А вот размер пикселя зависит от того, какую чувствительность от него требуют. Ведь чем больше размер пикселя, тем больше света он соберет и тем больше будет его светочувствительность и отношение сигнал-шум. Получается, что на больших по размеру фотосенсорах меньше шума и больше светочувствительность, поэтому и такая разница в цене.

Влияние на кроп-фактор и ГРИП

Разные размеры фотосенсора определяют и значение кроп-фактора. Числовое значение кроп фактора получается из отношения диагонали кадра 35 миллиметровой пленки к диагонали матрицы. Чем меньше матрица, тем меньше её диагональ и значит кроп-фактор больше. Значение кроп-фактора влияет на эквивалентное фокусное расстояние, а ЭФК в свою очередь влияет на ГРИП.

Вляние физической величины матрицы на ГРИП происходит по законам оптики. При проведении опыта брали три фотоаппарата и делали снимки при полностью одинаковых настройках, но с тремя разными по размеру фотосенсорами.

И в итоге ГРИП (резкость предметов на разном удалении от фотокамеры) был больше у фотоаппарата с наименьшей матрицей, то есть все предметы были в резкости. А у фотоаппарата с большими матрицами ГРИП был меньше.

Это важно когда вы делаете снимки с размытым фоном. Если на вашей фотокамере фотоэлемент с маленькой диагональю, то будет тяжело получить размытый фон на снимке.

Обозначение матриц

Обозначают размер фотосенсора обычно как дробь дюйма. Например, 1/1.8 дюйма. Такое значение больше реальной диагонали матрицы, для которой это обозначение применяется.

Это обозначение прижилось еще в 50-х годах прошлого века. Тогда это значение применялось для обозначения размера передающей трубки (круглой), которая называлась "видикон". С тех пор и называются эти дюймы - "видиконовские". Тогда было установлено, что полезное изображение по диагонали примерно равно 2/3 диаметра трубки. Потому что прямоугольное изображение помещалось в кругу передающей трубки.



Внешний вид видикона и определение диагонали

Так до сих пор и считается, что реальный размер диагонали матрицы примерно равен 2/3 от значения типоразмера выраженного в дроби дюймов (видиконовских).

Применяются таблицы соответствия значения в дюймах и соотношения сторон фотосенсора в миллиметрах.

Размер в "видиконовых дюймах" Диагональ в мм. Ширина в мм. Высота в мм. Площадь матрицы мм2
1/6" 2.67 1.97 1.47 2.90
1/4" 4.00 2.95 2.21 6.53
1/3.6" 4.44 3.28 2.46 8.06
1/3.2" 5.00 3.69 2.77 10.20
1/3" 5.33 3.93 2.95 11.60
1/2.7" 5.93 4.37 3.28 14.32
1/2" 8.00 5.90 4.42 26.10
1/1.8" 8.89 6.55 4.92 32.22
1/1.7" 9.41 6.94 5.21 36.13
2/3" 10.67 7.87 5.90 46.40
1" 16.00 11.80 8.85 104.40
4/3" 21.33 15.73 11.80 185.60

Размеры матрицы могут быть указаны в спецификации как диагональ в дюймах, или можно воспользоваться значением кроп-фактора для определения диагонали, а для нахождения кроп-фактора используйте значение фокусного расстояния.

Узнать величину фотосенсора можно по коэффициенту (кроп-фактор), который показывает во сколько раз диагональ матрицы меньше диагонали кадра пленки в 35 мм. А вот для вычисления этого коэффициента можно использовать значения фокусного расстояния и эквивалентного фокусного расстояния (ЭФР). Обычно они обозначаются как две пары чисел (фокусное расстояние должно быть написано на объективе), например, F=18-55 мм. Эквивалентное фокусное расстояние так же обозначается парой чисел Feq=28-84 мм. Теперь берем соответствующие числа и делим, например, 28/18 или 84/55. В результате получим коэффициент, который мы и искали (кроп-фактор), равным 1,53. И можно воспользоваться таблицей для определения физического размера фотоэлемента. Получим, что на фотокамере используется матрица APS 23х15 мм.

Эти отношения площади различных по размеру фотосенсоров (смотрите рисунок) могут примерно показать вам, насколько реальная чувствительность будет различаться у разных фотокамер, какие будут шумы, где и почему большие габариты фотоаппарата.

Чем больше размер сенсора, тем должна быть и больше оптика для обслуживания такой матрицы, поэтому фотоаппараты с большим фотосенсором и сами по размеру больше.

Откуда берутся шумы на снимках и как их уменьшить.

Как можно почистить фотосенсор в зеркальном фотоаппарате.

Строение матрицы фотокамеры и её характеристики.

типы, размер, разрешение, светочувствительность, чистка

Ни один фотоаппарат не может обойтись без матрицы. Современные модели оснащаются ей практически поголовно. Так произошло в момент, когда цифровые аналоги начали вытеснять устаревшие пленочные технологии. Матрица фотоаппарата является одним из основных компонентов, без которых невозможна эксплуатация всего прибора в целом, ведь его роль если и не является ключевой, то, по крайней мере, может считаться одной из ведущих. Именно матрица отвечает за качество будущего снимка, цветопередачу, четкость, полноту кадра. Как и другие важные элементы фототехники, матрица обладает рядом основных параметров, на которые обычно принято ориентироваться при выборе той или иной модели.

Типы матриц

Матрица цифрового фотоаппарата – это, в первую очередь, микросхема. Она преобразует световые лучи, которые, преломившись в системе линз и зеркал, попадают на нее. В результате такого преображения получается электрический сигнал, который выводится в цифровом виде, образуя снимок. За весь этот процесс отвечают специальные фотодатчики, расположенные на самой плате. Чем больше количество датчиков, чувствительных к свету, тем больше разрешение, и, как следствие, качество конечного снимка.

Встречаются матрицы следующих типов.

  1. ПЗС – тип матрицы фотоаппарата, который дословно расшифровывается как прибор зарядовой связи. В английском варианте – Charge-Coupled Device. Весьма известная аббревиатура, которая, впрочем, не так часто встречается в наши дни. Многие используют приборы, в основе которых лежат светодиоды, имеющие высокую светочувствительность, созданные на основе ПЗС системы, но, несмотря на широкую распространенность, данный вид микросхем все больше вытесняется более современным.
  2. КМОП-матрица. Формат матрицы, введенный в эксплуатацию в 2008 году. Впрочем, история создания данного формата уходит корнями в далекий 93-й, когда впервые была опробована технология APS. КМОП-матрица – это комплиментарный металл-оксид-полупроводник. Данная технология позволяет производить выборку отдельного пикселя почти так же, как и в стандартной системе памяти, к тому же, каждый пиксель оснащается дополнительным усилителем. Поскольку данная система является более современной, она зачастую оснащается автоматической подстройкой времени экспонирования каждого пикселя по отдельности. Данное улучшение позволяет получить полный кадр без потери боковых границ, а так же без потери верха и низа кадра. Полноразмерная матрица чаще всего бывает выполнена по технологии КМОП.
  3. Существует еще один тип матрицы – Live-MOS-матрица. Ее выпустила фирма «Панасоник». Данная микросхема функционирует при помощи технологии, в основе которых лежит МОП. МОП-матрица позволяет делать качественные профессиональные снимки без высокого уровня шума, а также исключает перегрев.

Физический размер матрицы

Размер матрицы фотоаппарата – одна из ее важнейших характеристик. Как правило, его указывают в дюймах в виде дроби. Больший размер подразумевает меньшее количество шумов на конечном снимке. К тому же, чем больше физический размер, тем больше световых лучей способна зарегистрировать матрица. Объем и количество лучей напрямую влияют на качество передачи оттенков и полутонов.

Кроп-фактор — это соотношение размеров кадра пленочного фотоаппарата 35 мм к размерам матрицы цифрового фотоаппарата. Все дело в том, что процесс создания цифровой матрицы довольно дорогостоящий, и поэтому производители постарались максимально сократить ее размер.

Если сравнить фото, сделанное с одним объективом на фотоаппарате с полнокадровой матрицей и фотоаппарате с «кропнутой» матрицей, то в первом случае угол охвата будет больше, и само изображение шире. Получается, что кропнутая матрица обрезает готовую картинку, отсюда и пошло такое название – кроп от англ. crop  (резать).

Чаще всего кроп-фактор используют для замера наиболее точного расстояния фокуса у объектива, устанавливая его на различные приборы. Здесь вступает в игру такое понятие, как эквивалентное фокусное расстояние (ЭФР), которое вычисляется путем умножения фокусного расстояния (ФР) на кроп-фактор. Так, объектив с полнокадровой матрицей (кроп=1) и объективом с ФР 50 мм зафиксирует такое же по размерам изображение, как и кропнутая матрица 1,6 с объективом с ФР 30 мм. В этом случае можно сказать, что ЭФР у этих объективов одинаковое. Ниже приведена таблица, в которой можно провести сравнение, как меняется ЭФР в зависимости от кроп-фактора.

Количество мегапикселей и разрешение матрицы

Матрица сама по себе является дискретной. Она состоит более чем из миллиона элементов, которые и преобразовывают световой поток, идущий от линз. В характеристике каждой модели фотоаппарата можно отыскать такой параметр матричной платы как количество светочувствительных элементов или разрешение матрицы, измеряемое в мегапикселях.

Один мегапиксель равен одному миллиону светочувствительных датчиков, улавливающих преломленные в линзах лучи. Разумеется, чем этот параметр будет больше, тем лучший снимок получится сделать.

Правда, здесь есть и обратная зависимость. Если физический размер матрицы меньше, то и количество мегапикселей должно быть пропорционально меньше, в противном случае не удастся избежать эффекта дифракции: фотографии будут замыленными, без четкости.

Чем больше размер пикселя, тем больше он способен зафиксировать лучей, падающих на него. Размер пикселей напрямую связан с размерами матрицы, и влияет, в основном, на широту кадра. Чем больше количество мегапикселей с правильным соотношением размеров матрицы, тем больше лучей света смогу уловить датчики. Количество зафиксированных лучей напрямую влияет на исходные параметры преобразуемого материала: резкость, цветность, объем, контрастность, фокус.

Таким образом, разрешение фотокамеры влияет на качество снимка. Зависимость разрешения от объема использующихся пикселей очевидна. В объективе при помощи сложной расстановки оптических элементов формируется необходимый световой поток, который потом матрица поделит на пиксели. Оптические приборы тоже обладают собственным разрешением. Более того, если разрешение объектива достаточно мало, а передача двух светящихся точек, разделяемых одной темной, происходит как единого целого, то разрешение будет не столь отчетливо выделяться. Происходит это именно из-за прямой зависимости и привязки к числу мегапикселей.

Важно: на качественный снимок влияет как параметр разрешения матрицы, так и разрешение оптики объектива. Измеряется оно количество линий на 1 мм. Своего максимального значения разрешение достигает, когда оба показателя — и матрица, и объектив — соответствуют друг другу.

Если говорить о разрешении современных цифровых микросхем, то оно складывается из размера пикселя (от 2 до 8 мкм). На сегодняшний день на рынке представлены модели с показателями до 30 мп.

Светочувствительность

В фотоаппаратах по отношению к матрице принято использовать термин эквивалентной чувствительности. Связано это с тем, что подлинную чувствительность можно измерять различными способами в зависимости от множества параметров матрицы. Зато, применив усиление сигнала и цифровую обработку, пользователь может обнаружить высокие пределы чувствительности.

Параметры светочувствительности демонстрируют возможность исходного материала преобразовываться из электромагнитных воздействий потока света в электрический двоичный сигнал. Проще говоря, показывать, сколько требуется света для получения объективного уровня электрического импульса на выходе.

Параметр чувствительности (ISO) чаще всего используется фотографами для демонстрации возможности съемки в условиях плохого освещения. Увеличение чувствительности в параметрах прибора позволяет улучшить качество конечного снимка при необходимом значении диафрагмы и выдержки. ISO может достигать значения от нескольких десятков до тысяч и десятков тысяч единиц. Негативной стороной высоких значений светочувствительности является появление «шумов», которые проявляются в виде эффекта зернистости кадра.

Как проводить чистку матрицы в домашних условиях

Битые пиксели не всегда могут быть таковыми на самом деле. В действительности, когда происходит смена объектива, на матрицу могут попасть частицы мусора, вызывающие эффект «битого пикселя». Чистка матрицы фотоаппарата нужна для профилактики этого эффекта, а также для более комфортной работы с прибором.

Со временем, в особенности, если устройство эксплуатируется подолгу в различных погодных условиях, матрица может покрыться слоем пыли. При нарушении герметичности в области крепления объектива на поверхность может попасть небольшое количество влаги, что тоже может негативно сказаться на качестве кадра. Чистку можно доверить профессионалам из сервисного центра, а можно провести и самостоятельно, в домашних условиях.

Важно не забывать, что помещение, в котором будет происходить процедура, должно быть как можно менее пыльным, без сильных сквозняков. Прежде чем приступать к самой процедуре, необходимо убедиться, что аккумуляторная батарея заряжена.

Первый и самый простой способ очистки стеклянной поверхности кремниевой пластины микросхемы – сдувание пыли. Для этого следует использовать самую обычную грушу для чистки объективов, она продается в любом крупном магазине бытовой техники. К сожалению, использование груши помогает только при снятии легкого налета небольших песчинок пыли. Для более крупных частиц, которые могли прилипнуть к поверхности, может потребоваться что-то более основательное.

Если груша не помогла справиться с пятнами на матрице, можно попробовать использовать специальный набор для очистки стеклянной поверхности. Стоит он несколько дороже, но эффективность очистки значительно выше.

  1. Первый пункт в очистке – использование специального пылесоса. Его сборка не занимает много времени и детально описана в инструкции к набору. На конце устройства находится мягкий наконечник, так что повреждение прибора во время работы исключено. Лучше всего будет прочистить при помощи пылесоса не только стеклянную поверхность, но и все скрытые полости, доступные для чистки.
  2. После уборки при помощи пылесоса можно начинать влажную уборку. Она осуществляется при помощи специальных щеточек, одна из которых влажная, другая сухая. Этот вид уборки нужен для пылинок, которые, будучи мокрыми, попали на поверхность стекла, и, высохнув, прикрепились к нему, создав эффект «битого пикселя». Влажная щетка пропитана специальным раствором, который эффективно удаляет засохшие песчинки и пылинки, не оставляя пятен и разводов. Необходимо проводить по стеклу плавными аккуратными движениями, лишь слегка нажимая на саму щетку. Оставшаяся влага довольно быстро испарится сама. Даже если после влажной уборки на стекле остается пара капель, то они прекрасно удаляются сухой щеточкой (кисточкой).
  3. Третий этап – финальный, проводим сухой щеточкой по матрице и убеждаемся, что она чистая.

После очистки можно попробовать сделать тестовый снимок, чтобы убедиться, что процедура прошла успешно. Для этого необходимо закрыть диафрагму до максимального значения и сделать снимок чистого белого листа, приведя объектив в состояние полной расфокусировки. Затем сравнить качество снимков до и после.

Почистить матрицу зеркального фотоаппарата довольно просто, для этого не требуется каких-то глубоких знаний или большого опыта, достаточно желания, немного терпения и знания базовых принципов очистки высокоточной оптической техники.

Заключение

Матрица фотоаппарата является важнейшей деталью любой современной зеркалки. Без нее невозможно сделать снимок, а от ее параметров зависит дальнейшее использование устройства. Если параметры матрицы выбраны неправильно, фотоаппарат не будет оптимально справляться со своими задачами. Матрица не требует какого-то дополнительного ухода, кроме периодической чистки стеклянной поверхности.

Следует отметить, что светочувствительные датчики очень хрупкие и плохо переживают падение прибора даже с небольшой высоты, поэтому эксплуатировать фотоаппарат рекомендуется с максимальной осторожностью и аккуратностью.

Выбираем фотоаппарат. Часть 4. Матрица и объектив

Главные параметры фотоаппарата, как уже неоднократно указывалось в предыдущих частях обзора, определяются характеристиками матрицы и оптики. Это те параметры, которые влияют на качество картинки в первую очередь. В последнее время стало модным гонятся за количеством пикселей в фотоаппарате и совсем не обращать внимания на физический размер матрицы. Это неправильно…

На первом месте должен стоять параметр - ФИЗИЧЕСКИЙ РАЗМЕР МАТРИЦЫ. Только от этого параметра и качества объектива зависят качества фотоаппарата и фотографий. Об этом много пишут, но не все читают специальную литературу. Я постараюсь очень коротко обобщить интернетовскую информацию по данному вопросу, а также сформулировать и пояснить основные понятия. Итак, матрица цифрового фотоаппарата состоит из множества отдельных светочувствительных элементов - пикселей, каждый такой элемент формирует одну точку на изображении. Чем больше разрешение матрицы, тем выше детализация получаемого снимка. Количество пикселей на матрице называется разрешением матрицы и измеряется в мегапикселях (миллионах пикселях). Каждый такой пиксель воспринимает свет и преобразует его в электрический заряд (чем ярче свет - тем сильней заряд). Если бы использовалась информация только о яркости света, то картинка получилась бы черно-белой. Чтобы она была цветной, ячейки покрывают цветными фильтрами, обычно это так называемые RGB фильтры (Red – красный, Green – зеленый, Blue –синий). Фильтр пропускает в ячейку лучи только своего цвета, поэтому каждый пиксель для процессора фотоаппарата имеет либо красный, либо зеленый, либо синий цвет и яркость этого цвета. Эти три цвета являются основными, а все остальные цвета получаются путем смешения основных. Процессор рассчитывает цвет каждого пикселя, анализируя информацию с соседних с ним пикселей. При этом сигнал с матрицы, для процессора будет выглядеть как сигнал от красных, зеленых и синих пикселей с различной яркостью. Таким образом, процессор формирует цифровое изображение. При печати изображения у пикселей появляется физический размер, и именно он и описывается разрешением при печати. Чем больше пикселей на дюйм (pixels per inch — ppi) будет на распечатке, тем менее заметными будут отдельные пиксели, и тем более реалистичным будет выглядеть отпечаток. Чем выше разрешение матрицы, тем более четкую и детализированную фотографию вы можете получить. Так же чем выше разрешение матрицы, тем большего размера фотографию вы можете напечатать без потери качества. Для качественной печати фотографии 10х15 кв.см достаточно фотоаппарата с разрешением 2 Мпикс, для печати фото А4 – 10 Мпикс. Для демонстрации снимков на экране компьютера этого более чем достаточно, поэтому гнаться за большим числом мегапикселей не имеет особого смысла. Гораздо важнее обратить внимание на физический размер матрицы цифрового фотоаппарата. Практически все, кто только начинают пользоваться цифровыми фотоаппаратами либо даже и не слышали о таком понятии, как физический размер матрицы, либо слышали, но не понимают его значимости. А многие просто путают физический размер с разрешением. Однако, на самом деле, физический размер матрицы - это одна из важнейших характеристик, влияющих на качество получаемых фотографий. Ситуация осложняется и окончательно запутывается еще и потому, что вместо реальных геометрических размеров матрицы - длины и ширины в миллиметрах, в паспорте приводятся некие мифические цифры, о которых я упомянул выше и которые понять чрезвычайно сложно.

В Википедии есть хорошее описание размера матрицы.
Размеры фотосенсоров чаще всего обозначают как “типоразмер” в виде дробных частей дюйма (например, 1/1.8″ или 2/3″), что фактически больше реального физического размера диагонали сенсора. Вот основные типоразмеры матриц, которые используются в цифровых камерах и вносятся в технический паспорт аппарата (в дюймах):

1 / 3.2 “; 1 / 2.7 “; 1 / 2,5″; 1 / 1,8″; 2 / 3″; APS-C

Эти обозначения происходят от стандартных обозначений размеров трубок телекамер в 1950-х годах. Они выражают не размер диагонали самой матрицы, а внешний размер колбы передающей трубки. Инженеры быстро установили, что по различным причинам диагональ полезной площади изображения составляет около двух третей диаметра трубки. Это определение стало устоявшимся (хотя и должно было быть давно отброшено). Не существует чёткой математической взаимосвязи между “типом” сенсора, выраженном в дюймах, и его фактической диагональю. Однако, в грубом приближении, можно считать, что диагональ матрицы составляет две трети типоразмера. Если добросовестно посчитать для каждого типоразмера сначала диагональ, а потом определить ее длину и ширину, и нарисовать основные типоразмеры матриц в реальном масштабе, то они будут выглядеть так:

На нижнем рисунке приведены реальные размеры матриц. Давайте теперь составим перечень матриц по типоразмерам:

  • Матрицы размера 1 / 3.2″ – самые маленькие матрицы, соотношение сторон 4:3, физический размер 3.4 х 4.5 кв.мм, используются в недорогих и компактных фотоаппаратах.

  • Матрицы размером 1 / 2.7″ , соотношение сторон 4:3, физический размер 4.0 х 5.4 кв.мм, используются в недорогих и компактных фотоаппаратах.

  • Матрицы размера 1 / 2,5″, соотношение сторон 4:3, то есть 4,3 х 5,8 кв.мм используются в большинстве компактных камер с несменной оптикой.

  • Матрицы размера 1 / 1,8″ , соотношение сторон 4:3, геометрический размер 5,3 х 7,2 кв.мм, используются в компактных камерах с несменной оптикой, среднего и выше среднего ценового диапазона (обычно в фотоаппаратах с разрешением от 8 Мпикс и более, но не обязательно).

  • Матрицы размера 2 / 3″ , соотношение сторон 4:3, физический размер 6,6 х 8,8 кв.мм иногда используются в дорогих компактных камерах с несменной оптикой.

  • Матрицы размера 4 / 3″ , физический размер 18 х 13,5 кв.мм, соотношение сторон 4:3, используются в дорогих камерах.

  • DX, APS-C формат, соотношение сторон 3:2, размер около 24 х 18 кв.мм. Матрицы таких размеров наиболее часто встречаются в цифровых зеркальных фотоаппаратах. Они соответствуют «полукадру» 35 мм кадра. Подавляющее большинство любительских, полупрофессиональных и даже профессиональных камер используют матрицы такого размера в силу того, что они относительно дёшевы в производстве и при этом размер пикселя остаётся довольно большим даже при 10 Мп разрешении.

  • Полнокадровая матрица размера 36 х 24 кв.мм, соотношение сторон 3:2, по размерам соответствующая классическому 35 мм кадру (3:2). На рынке представлено всего несколько моделей фотоаппаратов с матрицей такого размера. Такие матрицы дороги и сложны в производстве.

Самое высокое качество цифровых фотографий получается с матрицы размером 6х4,5 см. Это примерно 32-40 мегапикселей, а фотографии весят в среднем 160 мегабайт. Кстати, стоимость такой матрицы, без фотоаппарата, составляет 25 000 евро, а с аппаратом до 45 тысяч евро! Как видите, чем больше размер матрицы, тем меньшее увеличение необходимо для получения фотографии. Какое качество фотографии размером А-4 будет с каждой из этих матриц, как вы думаете? Возможно ли получить отличное качество большой фотографии с матрицы компакта размером с горошину, даже если производители пишут, что она размером в 12 мегапикселей? В то время как матрица в 12 мегапикселей у профессионального фотоаппарата  имеет размер  негатива фотопленки - 36мм x 24 мм, что в 1,5 раза больше матрицы APS-C и в 2 раза больше, чем матрица 4/3.

А теперь, когда мы выяснили основные физические размеры матриц, давайте поговорим о том, на что же эти размеры влияют.

Во-первых, размер матрицы влияет на размер и вес самой фотокамеры. Поскольку размеры оптической части линейно зависят от размера матрицы, то фотоаппарат с матрицей 1/1,8″ при прочих равных условиях будет больше по размеру, чем фотоаппарат с матрицей 1 / 2.7″ .

Во-вторых, размер матрицы влияет на количество цифрового шума, передаваемого вместе с основным сигналом на светочувствительные элементы матрицы.

Шумы могут возникать по множеству причин, это либо дефекты в структуре матрицы, либо токи утечки (заряд может пробивать изоляцию и переходить с одного пикселя на другой), так же шум возникает в результате нагрева матрицы (так называемый тепловой шум, когда при повышении температуры на 6-8 градусов шум увеличивается в 2 раза). Сам по себе показатель шума нет смысла рассматривать, о нем нужно говорить в соотношении сигнал/шум. Физический размер матрицы и размер каждого пикселя в отдельности значительно влияют на количество шумов. Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал/шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами. Так же при большом размере каждого отдельного пикселя, слой изоляции, разделяющий пиксели друг от друга, толще и меньше зарядов ее пробивает, т.е. токов утечки меньше, а соответственно шумов меньше. Представьте, что на матрице одного и того же размера расположено либо 4 Мпикс, либо 8 Мпикс, и представьте толщину изоляции, которой они разделены друг от друга. Чем меньше пикселей приходится на единицу площади матрицы, тем лучше (выше реальная чувствительность, ниже уровень цветовых шумов, качественнее цветопередача). Кроме того, как уже было написано выше, матрица маленького размера из-за небольшого количества, попадающего на нее света, имеет слабый полезный сигнал, в результате его приходится сильнее усиливать, а вместе с полезным сигналом усиливаются и шумы, которые становятся более заметными.

Реальный размер матриц у современных аппаратов можно увидеть на странице Яндекс-маркет

Вывод

Следовательно, если вы хотите максимальное качество фотографий, покупаете фотоаппарат с максимально большой матрицей, насколько вам может позволить ваш бюджет. Поскольку физический размер матрицы напрямую связан с количеством попадающего на матрицу света, то чем матрица больше, тем качественней

Iso матрицы цифрового фотоаппарата - Вэб-шпаргалка для интернет предпринимателей!

Любой начинающий фотолюбитель знает, что правильная установка выдержки, диафрагмы и светочувствительности являются главными условиями для получения хороших фотографий. Прочитав в руководстве, как осуществляется настройка ISO в фотоаппарате, какую выдержку необходимо выбрать, какую при этом установить экспозицию, иной новичок решает, что это сложно и не нужно, так как современные камеры неплохо снимают в автоматическом режиме.

Однако если фотограф хочет получать действительно хорошие, достойные внимания снимки, он должен научиться разбираться, что означает каждый из этих параметров и как, к примеру, при выборе необходимой величины iso на фотоаппарате изменится итоговый кадр. Это достаточно просто.

Что это такое – iso?

Светочувствительность – один из важнейших параметров цифровой фототехники, характеризующий чувствительность матрицы фотоаппарата к попадающему на нее свету. Чем выше этот показатель в фотокамере, тем более чувствительный сенсор и тем меньше нужно освещения для получения хороших фотографий.

Световая чувствительность измеряется в единицах международного стандарта ISO. Поэтому обычно просто говорят о выбранном значении исо в фотоаппарате. Шкала светочувствительности обычно начинается со значения 100 единиц. Каждое следующее значение больше предыдущего в 2 раза: 200, 400, 800 и т.д., хотя есть модели, предусматривающие выбор промежуточных величин.

Экспозиция – наше все

Прежде чем говорить о настройке и использовании исо при фотографировании, необходимо вспомнить об экспозиции, правильная установка которой является главным условием получения ярких, качественных снимков. Этот параметр, характеризующий количество попадающего на матрицу света, достигается установкой необходимых значений выдержки, диафрагмы и ИСО. Выдержка – промежуток времени, в течение которого свет попадает на матрицу.

Диафрагма – изменяющее величину отверстие в объективе, пропускающее свет. Во времена пленочных аппаратов кадр экспонировали, устанавливая необходимые показатели выдержки и диафрагмы. Использование iso для изменения экспозиции практиковалось мало. Для этого требовалось бы каждый раз заправлять в аппарат фотопленку необходимой чувствительности, что неудобно с практической точки зрения.

Цифровая эра

Все изменилось с приходом эры цифровых аппаратов. Они позволяют проводить экспонирование, меняя светочувствительность фотоаппарата, не заботясь о том, какая установлена выдержка или каково значение диафрагмы. При уменьшении чувствительности уменьшается экспозиция, и изображение темнеет. И, наоборот, с ростом этого параметра экспозиция увеличивается, изображение делается более светлым. При этом увеличение светового потока, попадающего на сенсор, не происходит.

Изменения параметра осуществляется на программном уровне, благодаря использованию специальных алгоритмов обработки изображения. Это открывает новые возможности при фотографировании, особенно в условиях недостаточной освещенности. Но и рождает ряд проблем.

Немного теории

Каждая цифровая камера имеет кнопку (переключатель), активизирующий режим изменения светочувствительности. Чтобы лучше понять, как его использовать, нужно еще раз обратиться к пленочным фотоаппаратам. Фотопленки маркировались цифрами, которые соответствовали чувствительности к свету: 100, 200, 400, 800 единиц и т.д. С физической точки зрения минимальной величине 100 соответствовала максимальная плотность кристаллов солей серебра в фотоэмульсионном слое пленки.

Это позволяло получить гладкое, ровное изображение минимальной зернистости. При больших показателях светочувствительности пленки кристаллы имели более крупный размер, плотность их в эмульсионном слое была мала и, соответственно, получаемое изображение страдало излишней жесткостью и крупным «зерном».

В цифровых камерах действует такое же правило: при низком исо изображение гладкое и четкое, при большом приобретает зернистость и различные цветовые артефакты. Как говорят, возрастает уровень цифрового шума. Что это такое? Каждый пиксель матрицы вырабатывает электрический ток при попадании на него света. Даже в полной темноте из-за различных физических процессов на выходе пикселя ток (очень слабый) всегда обнаруживается. Это и есть цифровой шум, который может повлиять на итоговый кадр.

При выборе низкой чувствительности и хорошем освещении шум отсекается специальными фильтрами и получаемое изображение четкое и ровное, без искажений и дефектов.

При больших величинах светочувствительности и недостатке света расширяется диапазон пропускаемого фильтром сигнала, и на снимке становятся видны дефекты изображения, вызванные шумом. В дорогих камерах, благодаря использованию полноразмерных матриц и различных дополнительных настроек, шум значительно ниже, чем в бюджетных моделях. Но полностью от шума избавиться невозможно.

Использование iso

ВАЖНО! Каждый раз перед началом съемки необходимо, прежде всего, установить на фотоаппарате минимальный уровень чувствительности. Это поможет всегда получать качественные снимки.

Профессиональные фотографы советуют выбирать минимальную чувствительность (100-200 единиц), как можно реже его менять, а изображение экспонировать при помощи диафрагмы и выдержки. Следует, однако, учитывать, что многие фотомастера учились и достигли первых успехов, используя пленочные фотокамеры. Как уже отмечалось, каждый раз менять пленку при изменении условий освещения было проблематично, да и не было в продаже большого разнообразия пленок. Поэтому старые учебники фотодела подробно описывали, как установить правильную экспозицию, выбирая необходимые значения диафрагмы и выдержки с учетом освещенности объекта съемки.

Для современного фотографа-любителя возможность, нажав пару раз на кнопку ISO, получить качественные фотографии в полумраке, не заботясь об установке нужной выдержки при определенной диафрагме, очень ценна. И важна простота процесса фотографирования: не сложней, чем сделать селфи на камеру телефона. Поэтому большинство фотолюбителей широко используют эту функцию при фотографировании.

В помощь им можно порекомендовать несколько простых правил, выполняя можно получить фотографии хорошего качества:

  • Использовать минимальные возможные показатели (100-200 единиц) при дневном либо ярком искусственном освещении.
  • Для съемки при недостаточном освещении без штатива для фотоаппарата, лучше установить значение 200-400 единиц. В помещении — в диапазоне от 400 до 800 единиц.
  • Показатели от 800 до 1600 единиц предпочтительно использовать при фотографировании в вечернее время различных мероприятий с большим количеством людей. В таких случаях необходимо для получения четких снимков выставлять высокое значение светочувствительности.
  • Уровень 1600 единиц и выше дает возможность фотографировать, находясь в зрительном зале. Более высокие значения светочувствительности предназначены для очень низкой освещенности, но использовать их зачастую нецелесообразно из-за появления на снимках сильных шумов.

РЕКОМЕНДАЦИЯ: Если планируется постановочная съемка ночью лучше всего использовать штатив и выставлять низкое значение iso. Это поможет получить выразительные кадры с низкой зернистостью.

Выбор камеры по ISO: рекомендации

Разобравшись, что значит iso в фотоаппарате, можно назвать основные критерии выбора камеры для покупки с учетом данного параметра.

Диапазон светочувствительности

Он есть у каждого цифрового фотоаппарата. У камер бюджетного сегмента минимальное значение составляет обычно 100 единиц, максимальное 1600. Дорогие модели имеют верхние границы чувствительности 3200 единиц и даже еще больше. На самом деле это часто маркетинговая уловка: показать потенциальному покупателю, что такое iso в камере есть, и с его помощью можно фотографировать практически в темноте. Однако высокие показатели светочувствительности не гарантируют возможность снимать в условиях недостаточного освещения.

При фотографировании на максимальных значениях значительная часть изображение состоит из шума, поэтому ни о каком художественном качестве таких фотографий говорить не приходится. Существуют модели фотокамер с уровнем светочувствительности несколько сот тысяч единиц и даже 3 280 000 единиц! Но такое iso в фотоаппарате – это лишь демонстратор результатов технологии и технического уровня фирмы-производителя. Фотографировать в таком режиме можно и почти при нулевом уровне освещенности, но изображение из-за обилия шума будет лишь угадываться.

На практике показатели светочувствительности больше 800 единиц применяются редко даже при фотографировании на профессиональные камеры.
Вывод: модель фотокамеры с диапазоном чувствительности от 100 единиц до 1600 наиболее оптимален для покупки.

Матрица фотоаппарата

Важнейшая часть цифрового аппарата. Отвечает за качество фотографии, ее яркость, цветопередачу и четкость. Представляет собой сенсорный датчик, преобразующий световые лучи, попадающие на него через объектив, в электрический сигнал. Именно матрица отвечает за чувствительность iso фотокамеры. Уровень светочувствительности матрицы зависит от двух составляющих: физического размера и технологии изготовления. Размер определяет уровень шума, так как матрицы, имеющие больший размер, меньше греются и меньше «шумят».

Чем больше матрица, тем больше размер ее пикселей. Поглощают свет такие пиксели лучше, светочувствительность у них выше. Наибольшей чувствительностью обладают полноразмерные (имеющие размер кадра фотопленки) матрицы. Они же имеют наименьший уровень шума. Но они очень дороги и используются в профессиональных камерах.

В аппаратах начального уровня (не мыльницах) и полупрофессиональных моделях применяются кроп-матрицы (урезанные), размерами в 1,6-2 раза меньше полнокадровых.

Чувствительность у них меньше, шумят больше, но в большинстве случаев их возможностей достаточно для получения хороших снимков в разных условиях.

Выделяют 2 вида технологий, применяемых в производстве матриц:

  • CCD — отличается высокой чувствительность и низким уровнем шумов, что положительно влияет на качество фотографии, Имеет относительно высокое энергопотребление.
  • CMOS – обеспечивает более эффективное энергопотребление и высокую скорость работы. Имеют больший уровень шума и худшую чувствительность. Фототехника с данным типом матрицы наиболее распространена.

Вывод: CCD – матрица обладает большей светочувствительностью, но скорее всего придется покупать камеру с CMOS – матрицей, так как подавляющее большинство производителей перешли на производство фотоаппаратов с ней.

Любой начинающий фотолюбитель знает, что правильная установка выдержки, диафрагмы и светочувствительности являются главными условиями для получения хороших фотографий. Прочитав в руководстве, как осуществляется настройка ISO в фотоаппарате, какую выдержку необходимо выбрать, какую при этом установить экспозицию, иной новичок решает, что это сложно и не нужно, так как современные камеры неплохо снимают в автоматическом режиме.

Однако если фотограф хочет получать действительно хорошие, достойные внимания снимки, он должен научиться разбираться, что означает каждый из этих параметров и как, к примеру, при выборе необходимой величины iso на фотоаппарате изменится итоговый кадр. Это достаточно просто.

Что это такое – iso?

Светочувствительность – один из важнейших параметров цифровой фототехники, характеризующий чувствительность матрицы фотоаппарата к попадающему на нее свету. Чем выше этот показатель в фотокамере, тем более чувствительный сенсор и тем меньше нужно освещения для получения хороших фотографий.

Световая чувствительность измеряется в единицах международного стандарта ISO. Поэтому обычно просто говорят о выбранном значении исо в фотоаппарате. Шкала светочувствительности обычно начинается со значения 100 единиц. Каждое следующее значение больше предыдущего в 2 раза: 200, 400, 800 и т.д., хотя есть модели, предусматривающие выбор промежуточных величин.

Экспозиция – наше все

Прежде чем говорить о настройке и использовании исо при фотографировании, необходимо вспомнить об экспозиции, правильная установка которой является главным условием получения ярких, качественных снимков. Этот параметр, характеризующий количество попадающего на матрицу света, достигается установкой необходимых значений выдержки, диафрагмы и ИСО. Выдержка – промежуток времени, в течение которого свет попадает на матрицу.

Диафрагма – изменяющее величину отверстие в объективе, пропускающее свет. Во времена пленочных аппаратов кадр экспонировали, устанавливая необходимые показатели выдержки и диафрагмы. Использование iso для изменения экспозиции практиковалось мало. Для этого требовалось бы каждый раз заправлять в аппарат фотопленку необходимой чувствительности, что неудобно с практической точки зрения.

Цифровая эра

Все изменилось с приходом эры цифровых аппаратов. Они позволяют проводить экспонирование, меняя светочувствительность фотоаппарата, не заботясь о том, какая установлена выдержка или каково значение диафрагмы. При уменьшении чувствительности уменьшается экспозиция, и изображение темнеет. И, наоборот, с ростом этого параметра экспозиция увеличивается, изображение делается более светлым. При этом увеличение светового потока, попадающего на сенсор, не происходит.

Изменения параметра осуществляется на программном уровне, благодаря использованию специальных алгоритмов обработки изображения. Это открывает новые возможности при фотографировании, особенно в условиях недостаточной освещенности. Но и рождает ряд проблем.

Немного теории

Каждая цифровая камера имеет кнопку (переключатель), активизирующий режим изменения светочувствительности. Чтобы лучше понять, как его использовать, нужно еще раз обратиться к пленочным фотоаппаратам. Фотопленки маркировались цифрами, которые соответствовали чувствительности к свету: 100, 200, 400, 800 единиц и т.д. С физической точки зрения минимальной величине 100 соответствовала максимальная плотность кристаллов солей серебра в фотоэмульсионном слое пленки.

Это позволяло получить гладкое, ровное изображение минимальной зернистости. При больших показателях светочувствительности пленки кристаллы имели более крупный размер, плотность их в эмульсионном слое была мала и, соответственно, получаемое изображение страдало излишней жесткостью и крупным «зерном».

В цифровых камерах действует такое же правило: при низком исо изображение гладкое и четкое, при большом приобретает зернистость и различные цветовые артефакты. Как говорят, возрастает уровень цифрового шума. Что это такое? Каждый пиксель матрицы вырабатывает электрический ток при попадании на него света. Даже в полной темноте из-за различных физических процессов на выходе пикселя ток (очень слабый) всегда обнаруживается. Это и есть цифровой шум, который может повлиять на итоговый кадр.

При выборе низкой чувствительности и хорошем освещении шум отсекается специальными фильтрами и получаемое изображение четкое и ровное, без искажений и дефектов.

При больших величинах светочувствительности и недостатке света расширяется диапазон пропускаемого фильтром сигнала, и на снимке становятся видны дефекты изображения, вызванные шумом. В дорогих камерах, благодаря использованию полноразмерных матриц и различных дополнительных настроек, шум значительно ниже, чем в бюджетных моделях. Но полностью от шума избавиться невозможно.

Использование iso

ВАЖНО! Каждый раз перед началом съемки необходимо, прежде всего, установить на фотоаппарате минимальный уровень чувствительности. Это поможет всегда получать качественные снимки.

Профессиональные фотографы советуют выбирать минимальную чувствительность (100-200 единиц), как можно реже его менять, а изображение экспонировать при помощи диафрагмы и выдержки. Следует, однако, учитывать, что многие фотомастера учились и достигли первых успехов, используя пленочные фотокамеры. Как уже отмечалось, каждый раз менять пленку при изменении условий освещения было проблематично, да и не было в продаже большого разнообразия пленок. Поэтому старые учебники фотодела подробно описывали, как установить правильную экспозицию, выбирая необходимые значения диафрагмы и выдержки с учетом освещенности объекта съемки.

Для современного фотографа-любителя возможность, нажав пару раз на кнопку ISO, получить качественные фотографии в полумраке, не заботясь об установке нужной выдержки при определенной диафрагме, очень ценна. И важна простота процесса фотографирования: не сложней, чем сделать селфи на камеру телефона. Поэтому большинство фотолюбителей широко используют эту функцию при фотографировании.

В помощь им можно порекомендовать несколько простых правил, выполняя можно получить фотографии хорошего качества:

  • Использовать минимальные возможные показатели (100-200 единиц) при дневном либо ярком искусственном освещении.
  • Для съемки при недостаточном освещении без штатива для фотоаппарата, лучше установить значение 200-400 единиц. В помещении — в диапазоне от 400 до 800 единиц.
  • Показатели от 800 до 1600 единиц предпочтительно использовать при фотографировании в вечернее время различных мероприятий с большим количеством людей. В таких случаях необходимо для получения четких снимков выставлять высокое значение светочувствительности.
  • Уровень 1600 единиц и выше дает возможность фотографировать, находясь в зрительном зале. Более высокие значения светочувствительности предназначены для очень низкой освещенности, но использовать их зачастую нецелесообразно из-за появления на снимках сильных шумов.

РЕКОМЕНДАЦИЯ: Если планируется постановочная съемка ночью лучше всего использовать штатив и выставлять низкое значение iso. Это поможет получить выразительные кадры с низкой зернистостью.

Выбор камеры по ISO: рекомендации

Разобравшись, что значит iso в фотоаппарате, можно назвать основные критерии выбора камеры для покупки с учетом данного параметра.

Диапазон светочувствительности

Он есть у каждого цифрового фотоаппарата. У камер бюджетного сегмента минимальное значение составляет обычно 100 единиц, максимальное 1600. Дорогие модели имеют верхние границы чувствительности 3200 единиц и даже еще больше. На самом деле это часто маркетинговая уловка: показать потенциальному покупателю, что такое iso в камере есть, и с его помощью можно фотографировать практически в темноте. Однако высокие показатели светочувствительности не гарантируют возможность снимать в условиях недостаточного освещения.

При фотографировании на максимальных значениях значительная часть изображение состоит из шума, поэтому ни о каком художественном качестве таких фотографий говорить не приходится. Существуют модели фотокамер с уровнем светочувствительности несколько сот тысяч единиц и даже 3 280 000 единиц! Но такое iso в фотоаппарате – это лишь демонстратор результатов технологии и технического уровня фирмы-производителя. Фотографировать в таком режиме можно и почти при нулевом уровне освещенности, но изображение из-за обилия шума будет лишь угадываться.

На практике показатели светочувствительности больше 800 единиц применяются редко даже при фотографировании на профессиональные камеры.
Вывод: модель фотокамеры с диапазоном чувствительности от 100 единиц до 1600 наиболее оптимален для покупки.

Матрица фотоаппарата

Важнейшая часть цифрового аппарата. Отвечает за качество фотографии, ее яркость, цветопередачу и четкость. Представляет собой сенсорный датчик, преобразующий световые лучи, попадающие на него через объектив, в электрический сигнал. Именно матрица отвечает за чувствительность iso фотокамеры. Уровень светочувствительности матрицы зависит от двух составляющих: физического размера и технологии изготовления. Размер определяет уровень шума, так как матрицы, имеющие больший размер, меньше греются и меньше «шумят».

Чем больше матрица, тем больше размер ее пикселей. Поглощают свет такие пиксели лучше, светочувствительность у них выше. Наибольшей чувствительностью обладают полноразмерные (имеющие размер кадра фотопленки) матрицы. Они же имеют наименьший уровень шума. Но они очень дороги и используются в профессиональных камерах.

В аппаратах начального уровня (не мыльницах) и полупрофессиональных моделях применяются кроп-матрицы (урезанные), размерами в 1,6-2 раза меньше полнокадровых.

Чувствительность у них меньше, шумят больше, но в большинстве случаев их возможностей достаточно для получения хороших снимков в разных условиях.

Выделяют 2 вида технологий, применяемых в производстве матриц:

  • CCD — отличается высокой чувствительность и низким уровнем шумов, что положительно влияет на качество фотографии, Имеет относительно высокое энергопотребление.
  • CMOS – обеспечивает более эффективное энергопотребление и высокую скорость работы. Имеют больший уровень шума и худшую чувствительность. Фототехника с данным типом матрицы наиболее распространена.

Вывод: CCD – матрица обладает большей светочувствительностью, но скорее всего придется покупать камеру с CMOS – матрицей, так как подавляющее большинство производителей перешли на производство фотоаппаратов с ней.

Светочувствительность цифровой фотокамеры — характеристика цифрового фотоаппарата, определяющая зависимость числовых параметров созданного им цифрового изображения от экспозиции, полученной светочувствительной матрицей. Светочувствительность цифровых фотоаппаратов принято выражать в единицах, эквивалентных светочувствительности ISO желатиносеребряных фотоэмульсий [1] . Это позволяет пользоваться методами измерения экспозиции, свойственными классической плёночной фотографии.

Однако понятие светочувствительности цифровых камер не имеет ничего общего с традиционными фотоматериалами в силу неприменимости законов сенситометрии, и отражает чувствительность матрицы лишь косвенно. В отличие от светочувствительности фотоматериалов, относящейся только к конкретной используемой фотоэмульсии, в цифровой фотографии под светочувствительностью понимают передаточную функцию всей системы, включающей матрицу, предусилитель и алгоритмы АЦП. Для цифровых видеокамер и передающих телекамер, основанных на аналогичных матрицах, единицы ISO не применяются, а светочувствительность выражается в минимальной освещённости объекта съёмки в люксах, позволяющей получать изображение с допустимым уровнем шумов [2] [3] . В некоторых случаях чувствительность видеокамер выражается минимальной освещённостью при определённом уровне усиления сигнала в децибелах [4] .

Светочувствительность узкоспециализированных видеоустройств, например, видеорегистраторов, часто указывается в нестандартных единицах, учитывающих светосилу жёстковстроенного объектива. Однако, в большинстве случаев светочувствительность таких приборов выражается в отношении электрического напряжения в вольтах, получаемого на аналоговом выходе матрицы к величине экспозиции излучением с длиной волны 550 нанометров, считающейся максимумом спектральной чувствительности человеческого зрения. С единицами ISO эта величина никак не соотносится.

Содержание

Эквивалентная светочувствительность [ править | править код ]

Цифровыми фотоаппаратами при одной и той же экспозиции может быть получено изображение разной степени яркости. Это достигается изменением предварительного усиления электрических сигналов светочувствительной матрицы и алгоритмов их последующего аналогово-цифрового преобразования в цветовое пространство, главным образом, sRGB [1] . Производители цифровой аппаратуры устанавливают фиксированную зависимость между значениями сигналов матрицы и соответствующими параметрами цветового пространства, принимаемую в качестве экспозиционного индекса EI. Большинство цифровых фотоаппаратов имеет несколько значений EI, переключение между которыми позволяет находить наиболее приемлемый компромисс между возможностью съёмки с короткими выдержками и интенсивностью шумов в получаемом изображении. Значения EI выбираются таким образом, чтобы получаемое цифровое изображение было сопоставимо с получаемым на плёнке такой же чувствительности ISO, с теми же экспозиционными параметрами. Поэтому, в обиходе принято называть значения EI цифровых фотоаппаратов «эквивалентной светочувствительностью ISO». Однако, этот параметр имеет лишь косвенное отношение к светочувствительности матрицы, и выражается в единицах плёночной сенситометрии только для удобства использования классических приёмов измерения экспозиции, принятых в традиционной фотографии.

Некоторые производители предусматривают возможность регулировки параметров яркости в пределах одного значения EI, как дополнительный пункт меню настроек камеры или установок конвертации «сырых» файлов RAW. Современные цифровые камеры многократно превосходят фотоматериалы по светочувствительности, и в эквивалентных ISO единицах достигают значения 4 560 000, недоступного для галогеносеребряных фотоэмульсий [5] . Совершенствование алгоритмов шумопонижения позволяет получать при таких значениях EI изображение приемлемого качества.

Сравнение разных единиц светочувствительности [ править | править код ]

В таблице приведены сравнительные значения систем измерения светочувствительности ISO и APEX, и эквивалентные значения светочувствительности, выбираемые производителями цифровых фотоаппаратов для градуировки их шкал в соответствии со стандартом ISO12232:2006. Видно, что значения, превышающие 20 000 ISO не применимы к существующим фотоматериалам и отражают только регистрирующую способность цифровых фотокамер, выпускаемых со второй половины 2000-х годов.

Сравнение светочувствительности фотоматериалов и цифровых фотовидеокамер
APEX Sv ISO
арифм./логарифм.°
Эквивалент ISO
цифровых фотоаппаратов
Пример плёнки или камеры,
обладающих такой светочувствительностью
2 12/12° Gevacolor 8-мм обращаемая, позднее Agfa Dia-Direct, «Свема» КН-1
16/13° Agfacolor 8-мм обращаемая
20/14° Adox CMS 20
3 25/15° старый Agfacolor, Kodachrome II и Kodachrome 25, Efke 25, «Тасма» ЦО-22Д
32/16° Kodak Panatomic-X, «Свема» ДС-5М, Фото-32
40/17° Kodachrome 40 (киноплёнка)
4 50/18° 50 Fuji RVP, Ilford Pan F Plus, Kodak Vision2 50D 5201 (киноплёнка), AGFA CT18, Efke 50
64/19° Kodachrome 64, Ektachrome-X, ORWOCOLOR NC-19
80/20° Ilford Commercial Ortho, «Свема» Фото-65
5 100/21° 100 Kodacolor Gold, Kodak T-Max, Provia, Efke 100, «Свема» КН-3
125/22° Ilford FP4+, Kodak Plus-X Pan, «Свема» Фото-130
160/23° Fujicolor Pro 160C/S, Kodak High-Speed Ektachrome, Kodak Portra 160NC и 160VC
6 200/24° 200 Fujicolor Superia 200, Agfa Scala 200x, «Свема» ОЧТ-180, «Тасма» ОЧ-180, ЦО-Т-180Л
250/25° «Тасма» Фото-250
320/26° Kodak Tri-X Pan Professional
7 400/27° 400 Kodak T-Max, Tri-X 400, Ilford HP5+, Fujifilm Superia X-tra 400, Konica VX-400 «Свема» ОЧТ-В
500/28° Kodak Vision3 500T 5219 (киноплёнка), «Тасма» Панхром тип-17
640/29° Polaroid 600
8 800/30° 800 Fuji Pro 800Z
1000/31° Kodak P3200 TMAX, Ilford Delta 3200
1250/32° Kodak Royal-X Panchromatic
9 1600/33° 1600 Fujicolor 1600, Kodak Ektapress 1600, «Тасма» Изопанхром тип-42
2000/34°
2500/35°
10 3200/36° 3200 «Тасма» Панхром тип-13, фотокомплекты для моментальной фотографии Polaro >[6] , Fujifilm FP-3000b
4000/37°
5000/38° «Тасма» Изопанхром тип-24
11 6400/39° 6400
8000/40°
10000/41°
12 12500/42° 12800
16000/43°
20000/44° Фотокомплекты для моментальной фотографии Polaro >[6]
13 25000/45° 25600 Первый серийный цифровой фотоаппарат с таким эквивалентом ISO: Canon EOS 5D Mark II (2008)
32000/46°
40000/47°
14 50000/48° 51200
64000/49°
80000/50°
15 100000/51° 102400 Первые серийные цифровые фотоаппараты с таким эквивалентом ISO: Nikon D3S и Canon EOS-1D Mark IV (2009)
125000/52°
160000/53°
16 200000/54° 204800 Первые серийные цифровые фотоаппараты с таким эквивалентом ISO: Canon EOS-1D X (2011), Nikon D4 (2012)
250000/55°
320000/56°
17 400000/57° 409600 Первые серийные цифровые фотоаппараты с таким эквивалентом ISO: Nikon D4s и Sony α-7S (2014)
500000/58°
620000/59°
18 800000/60° 819200
1000000/61°
1250000/62°
19 1600000/63° 1638400
2000000/64°
2500000/65°
20 3200000/66° 3280000 Первый серийный цифровой фотоаппарат с таким эквивалентом ISO: Nikon D5 [7] (2016)
4000000/67°
4600000/68° 4560000 Первая серийная видеокамера с таким эквивалентом ISO: Canon ME20F-SH [5] (2015)

Примечания к таблице: значения светочувствительности систем APEX и ISO, выделенные жирным шрифтом, соответствуют реальным значениям, использующимся производителями для конкретных фотоматериалов. Все остальные значения вычислены на основе тех же прогрессий в качестве математической экстраполяции существующих шкал.

Стандарт ISO 12232:2006 [ править | править код ]

С 1998 года существует стандарт ISO [8] , устанавливающий зависимость между величиной сигналов матрицы и конкретными экспозиционными индексами (EI) [9] . Этот стандарт даёт производителям цифровых фотоаппаратов пять возможных способов определения конкретных значений EI, три из которых существуют с 1998 года, а два появились в 2006 году в соответствии с рекомендациями CIPA DC-004 [10] , предложенными японской Ассоциацией по Стандартизации Систем Отображения (англ. Standard of the Camera & Imaging Products Association, CIPA ). В зависимости от выбранной методики, экспозиционный индекс EI зависит от светочувствительности и уровня собственных шумов матрицы, а также от характеристик получаемого изображения. Стандарт ISO определяет светочувствительность всего канала отображения фотокамеры, а не его отдельных компонентов, как это было предложено компанией Kodak в 2001 году для двух собственных сенсоров [11] .

Методика рекомендованного экспозиционного индекса (REI), появившаяся в последней версии стандарта ISO 12232:2006 [12] , разрешает производителям аппаратуры самостоятельно устанавливать значения EI, основываясь на собственной точке зрения, при каких значениях EI получаются правильно экспонированные изображения. Это единственная методика, применимая к форматам изображения, использующим цветовые пространства, отличные от sRGB, а также в случаях использования матричного режима измерения экспозиции.

Методика стандартной выходной чувствительности (англ. Standard Output Sensitivity, SOS ) также появилась в последнем стандарте и основана на предположении, что средний уровень яркости в выходном изображении sRGB должен получаться при съёмке серой карты с 18 % отражательной способностью при измерении экспозиции экспонометрической системой, откалиброванной в соответствии со стандартом ISO 2721 без экспокоррекции. Поскольку измерения должны проводиться в цветовом пространстве sRGB, методика применима только к снимкам, сделанным в этом пространстве — главным образом, формата JPEG, — и неприменима к снимкам в формате RAW. Кроме того, методика неприемлема в случае использования матричного режима измерения.

Методика, основанная на точке насыщения, близка методике SOS, но основывается не на 18 % серой карте, а на 100 % яркости, при которой начинают пропадать детали в света́х. Значения экспозиционного индекса, полученного таким методом, выше, чем предыдущие, на 0,704. Так же, как и предыдущая методика SOS, метод точки насыщения предполагает измерения в цветовом пространстве sRGB и неприменим к файлам формата RAW.

Две методики, основанные на уровне шумов, иногда используются для определения диапазона EI любительских цифровых фотокамер. В этом случае определяются крайние значения EI, при которых снимки могут считаться «отличными» или «приемлемыми», соответственно для наименьшей и наибольшей эквивалентной светочувствительности.

Методы расчёта экспозиционных индексов [ править | править код ]

Значения эквивалентной светочувствительности ISO цифровых камер зависят от свойств сенсора и алгоритмов цифровой обработки получаемого изображения в камере.<4> heta >

Эта величина зависит от коэффициента пропускания T объектива, коэффициента виньетирования v(θ) и угла θ относительно оптической оси объектива. Чаще всего q=0,65, при условии, что θ=10°, T= 0,9, а v= 0,98 [8] .

Точка насыщения [ править | править код ]

Светочувствительность, определяемая по точке насыщения, рассчитывается с помощью равенства:

S s a t = 78 H s a t , <displaystyle S_<mathrm >=<frac <78>>>>,>

где H s a t <displaystyle H_<mathrm >> — максимальная экспозиция, не приводящая к появлению «пробитых» областей, лишённых информации. Обычно нижний предел такой чувствительности зависит от свойств матрицы, но при усилении её сигнала перед АЦП эквивалентная светочувствительность повышается. Коэффициент 78 принят потому, что калибровка экспонометров основывается на измерении серой карты с отражательной способностью 18 %. Такой объект даёт на изображении значение яркости, составляющее 18 %/√2 = 12,7 % от уровня насыщения. Множитель √2 обеспечивает запас в полступени, учитывающий блики, более яркие, чем света́ объекта съёмки [12] .

Определение по шумам [ править | править код ]

Светочувствительность, определяемая по методу измерения шумов, зависит от экспозиции, необходимой для достижения определённого отношения сигнал/шум на отдельных пикселях. Используются два соотношения: 40:1 («отличное изображение») и 10:1 («приемлемое качество»). Эти соотношения соответствуют субъективному восприятию изображения с разрешением 70 точек на сантиметр, рассматриваемого с расстояния в 25 сантиметров. Уровень шума определяется как среднеквадратическое отклонение яркости и цветности отдельных пикселей. Светочувствительность, определяемая этим методом, в наибольшей степени зависит от качества матрицы, и в значительно меньшей — от шумов предусилителя.

Стандартная выходная чувствительность [ править | править код ]

В дополнение к описанным методикам определения светочувствительности, стандарт ISO 12232:2006 предусматривает методику стандартной выходной чувствительности, основанной на зависимости числовых значений пикселей изображения от полученной экспозиции. Методика основана на равенстве:

S s o s = 10 H s o s , <displaystyle S_<mathrm >=<frac <10>>>>,>

в котором H s o s <displaystyle H_<mathrm >> отражает экспозицию, дающую значение 118 в 8-битном изображении sRGB, которое соответствует отображению 18 % серой карты при гамма-коррекции 2,2 [12] .

Применимость методик стандарта ISO [ править | править код ]

Стандарт определяет, какая из методик определения светочувствительности предпочтительна в различных ситуациях. Если светочувствительность, выбранная на основе соотношения уровня полезного сигнала к уровню шума 40:1 («отличное качество»), превосходит тот же параметр, полученный по точке насыщения, выбирается первое из двух значений, округлённое до ближайшего нижнего значения стандартной шкалы. Основанием для такого выбора считает

Хуже всего, когда мегапиксели наращивают в «новом» фотоаппарате на старой матрице, и делается это сугубо для маркетинга.

Смотреть шумы дело, конечно, увлекательное, но не стоит впадать в восторг, особенно если сравнить фотографии зеркалки и компакта. Да, зеркальная фотокамера шумит на ISO-800 меньше, чем компакт на ISO-400. Но не следует забывать 2 вещи:
1. все снимки компакта и зеркалки (кроме последних примеров) я делал со штатива — в этом случае ничто не мешает снимать компактом на минимальном ИСО с минимальными шумами.
2. ценность снимка определяется в первую очередь содержанием, а не техническим качеством 🙂

Кстати, не следует упрекать автора некачественными и грязными от шумов фотографиями 🙂 Они лишь демонстрируют то, о чём идёт речь, а она идёт про размер и светочувствительность матрицы.

Размер матрицы

Размер имеет значение:) Причём очень большое — это один из главных параметров цифровой фотокамеры. Тот самый который почему то не любят указывать производители. Размер матрицы складывается из размеров датчиков-пикселей и расстояния между ними. Именно от этих показателей в первую очередь зависит разрешение изображения, количество шумов, глубина резкости... Всё крайне важно для фотографа: любит он высокую детализацию, не жалует шумы и хочет иметь шикарную возможность менять диафрагмой глубину резкости. Последнее напрямую зависит от размера фотосенсора:

!!! Чем больше размер матрицы в фотоаппарате — тем меньше глубина резкости на снимке!

Перевожу фразу на русский: мыльницы и компакты дают резкость от пупа до самого горизонта (и это хорошо!), а зеркалкой можно реально регулировать ГРИП, выделяя главный объект съёмки — что ещё лучше 🙂 Размер матрицы говорит и об этом, и о габаритах самих фотокамер: у зеркалок вес и габариты больше.

Понятно, что большая матрица имеет более крупные пиксели, чем маленькая, если количество пикселей осталось прежнее. Перед нами условная схема 2-х матриц, первая от цифрокомпакта с не самой маленькой матрицей 7.2 x 5.3 mm (обозначение 1/1.8"), вторая от зеркальной камеры 23.7 x 15.6 mm (обозначение "APS-C" — Advanced Photo System type-C). На самом деле количество квадратиков-пикселей в реальных камерах гораздо больше, (например, 16 миллионов, а не 48 как здесь), но соотношения сторон на схеме для наглядности выполнены достаточно точно.

При одинаковой пиксельности (здесь, например, у обоих матриц 48 квадратиков-пикселей), площадь каждого пикселя у крупной матрицы больше, и соответственно, светочувствительность и цветопередача у зеркалки куда лучше (а шумов меньше!). Увеличить количество пикселей можно двумя способами — увеличить размер матрицы, а можно, наоборот, уменьшить площадь самих "квадратиков", чтобы их больше уместилось на прежнем размере матрицы. Первый путь дорогой, второй дешевле, так как не нужно увеличивать саму матрицу. Догадайтесь, по какому пути пройдёт производитель, чтобы гордо заявить: в нашей камере теперь не 10, а целых 20 мегапикселей!

Больше мегапикселей для детализации снимка, конечно, хорошо, а вот то, что при этом уменьшилась площадь каждого сенсора — очень плохо. В итоге народ вовсю скупает маркетинговые мегапиксели, никак не задумываясь об их происхождении. Вот примеры подобных матриц в 48 клеток и 192 клетки (мегапикселей стало в 4 раза больше!):

Понятно, что на второй схеме количество мегапикселей нарастил

Рассечение матрицы камеры, Часть 3: Внутренняя матрица ←

13 августа 2013 г.

Сегодня мы изучим внутреннюю матрицу камеры в нашей третьей и последней главе трилогии «Рассечение матрицы камеры». В первой статье мы узнали, как разделить полную матрицу камеры на внутреннюю и внешнюю матрицы и как правильно обрабатывать неоднозначности, возникающие в этом процессе. Во второй статье внешняя матрица рассматривалась более подробно, рассматривая несколько различных интерпретаций ее трехмерных вращений и перемещений.Сегодня мы так же рассмотрим внутреннюю матрицу, исследуя две эквивалентные интерпретации: как описание геометрии виртуальной камеры и как последовательность простых 2D-преобразований. После этого вы увидите интерактивную демонстрацию, иллюстрирующую обе интерпретации.

Если вам не интересно углубляться в теорию и вы просто хотите использовать свою внутреннюю матрицу с OpenGL, ознакомьтесь со статьями «Калиброванные камеры в OpenGL без glFrustum», «Калиброванные камеры» и «gluPerspective».

Все эти статьи являются частью серии «Камера перспективы, интерактивный тур». Чтобы прочитать другие статьи этой серии, перейдите к оглавлению.

Внутренняя матрица преобразует координаты трехмерной камеры в двумерные координаты однородного изображения. Эта перспективная проекция моделируется идеальной камерой-обскурой, показанной ниже.

Внутренняя матрица параметризована Хартли и Зиссерманом как

\ [ K = \ left ( \ begin {array} {c c c} f_x & s & x_0 \\ 0 & f_y & y_0 \\ 0 & 0 & 1 \\ \ end {массив} \правильно ) \]

Каждый внутренний параметр описывает геометрическое свойство камеры.Давайте подробно рассмотрим каждое из этих свойств.

Фокусное расстояние, \ (f_x \), \ (f_y \)

Фокусное расстояние - это расстояние между отверстием и пленкой (или плоскостью изображения). По причинам, которые мы обсудим позже, фокусное расстояние измеряется в пикселях. В настоящей камере-обскуре и \ (f_x \), и \ (f_y \) имеют одинаковое значение, которое показано как \ (f \) ниже.

На практике \ (f_x \) и \ (f_y \) могут различаться по ряду причин:

  • Дефекты сенсора цифровой камеры.
  • Изображение было неравномерно масштабировано при постобработке.
  • Объектив камеры создает непреднамеренное искажение.
  • В камере используется анаморфный формат, в котором объектив сжимает широкоэкранную сцену в матрицу стандартного размера.
  • Ошибки калибровки камеры.

Во всех этих случаях результирующее изображение имеет неквадратные пиксели.

Наличие двух разных фокусных расстояний не очень интуитивно понятно, поэтому в некоторых текстах (например, Форсайт и Понсе) используется одно фокусное расстояние и «соотношение сторон», которое описывает величину отклонения от идеально квадратного пикселя.Такая параметризация хорошо отделяет геометрию камеры (то есть фокусное расстояние) от искажения (соотношения сторон).

Смещение главной точки, \ (x_0 \), \ (y_0 \)

«Главная ось» камеры - это линия, перпендикулярная плоскости изображения, которая проходит через точечное отверстие. Его пересечение с плоскостью изображения называется «главной точкой», как показано ниже.

«Смещение главной точки» - это положение главной точки относительно исходной точки пленки.Точное определение зависит от того, какое соглашение используется для определения местоположения источника; на иллюстрации ниже предполагается, что он находится в нижнем левом углу фильма.

Увеличение \ (x_0 \) смещает точечное отверстие вправо:

Это эквивалентно смещению пленки влево и оставлению точечного отверстия без изменений.

Обратите внимание, что рамка, окружающая камеру, не имеет значения, имеет значение только положение точечного отверстия относительно пленки.

Наклон оси, \ (s \)

Наклон оси вызывает сдвиговое искажение проецируемого изображения. Насколько мне известно, нет никакого аналога смещению оси для настоящей камеры-обскуры, но очевидно, что некоторые процессы оцифровки могут вызвать ненулевой перекос. Мы рассмотрим перекос подробнее позже.

Прочие геометрические свойства

Фокусное расстояние и смещение главной точки сводятся к простому перемещению пленки относительно точечного отверстия. Должны же быть другие способы трансформировать камеру, верно? А как насчет поворота или масштабирования пленки?

Вращение пленки вокруг точечного отверстия эквивалентно вращению самой камеры, которым управляет внешняя матрица.Вращение пленки вокруг любой другой фиксированной точки \ (x \) эквивалентно вращению вокруг отверстия \ (P \) с последующим перемещением на \ ((x-P) \).

А как насчет масштабирования? Должно быть очевидно, что удвоение всех размеров камеры (размера пленки и фокусного расстояния) не влияет на снимаемую сцену. Если вместо этого вы удвоите размер пленки и фокусное расстояние , а не , это будет эквивалентно удвоению обоих (без операции) и последующему уменьшению фокусного расстояния вдвое. Таким образом, явное представление масштаба фильма было бы излишним; он фиксируется фокусным расстоянием.

Фокусное расстояние - от пикселей до мировых единиц

Это обсуждение масштабирования камеры показывает, что существует бесконечное количество камер-обскур, которые производят одно и то же изображение. Внутренняя матрица касается только отношения между координатами камеры и координатами изображения, поэтому абсолютные размеры камеры не имеют значения. Использование пиксельных единиц для фокусного расстояния и смещения главной точки позволяет нам представить относительные размеры камеры, а именно положение пленки относительно ее размера в пикселях.

Другими словами, внутреннее преобразование камеры инвариантно к равномерному масштабированию геометрии камеры. Представляя размеры в пикселях, мы естественным образом фиксируем эту неизменность.

Вы можете использовать аналогичные треугольники для преобразования пиксельных единиц в мировые единицы (например, мм), если вы знаете хотя бы одно измерение камеры в мировых единицах. Например, если вы знаете, что пленка камеры (или цифровой датчик) имеет ширину \ (W \) в миллиметрах, а ширина изображения в пикселях равна \ (w \), вы можете преобразовать фокусное расстояние \ (f_x \) в мировые единицы используют:

\ [F_x = f_x \ frac {W} {w} \]

Другие параметры \ (f_y \), \ (x_0 \) и \ (y_0 \) могут быть преобразованы в их аналоги в мировых единицах \ (F_y \), \ (X_0 \) и \ (Y_0 \), используя аналогичные уравнения:

\ [ \ begin {array} {ccc} F_y = f_y \ frac {H} {h} \ qquad X_0 = x_0 \ frac {W} {w} \ qquad Y_0 = y_0 \ frac {H} {h} \ end {массив} \]

Как мы обсуждали ранее, только расположение точечного отверстия и материи пленки, поэтому физическая коробка, окружающая камеру, не имеет значения.По этой причине во многих обсуждениях геометрии камеры используется более простое визуальное представление: пирамида камеры.

Область обзора камеры имеет форму пирамиды, которую иногда называют «конусом видимости». Давайте добавим к нашей сцене несколько трехмерных сфер и покажем, как они попадают в конус видимости, и создадим изображение.

Так как "коробочка" камеры не имеет значения, снимаем ее. Также обратите внимание, что изображение в фильме представляет собой зеркальную версию реальности. Чтобы исправить это, мы будем использовать «виртуальный образ» вместо самого фильма.Виртуальное изображение имеет те же свойства, что и изображение на пленке, но в отличие от настоящего изображения виртуальное изображение появляется перед камерой, а проецируемое изображение не переворачивается.

Обратите внимание, что положение и размер плоскости виртуального изображения произвольны - мы могли бы удвоить ее размер, если бы мы также удвоили расстояние от отверстия.

После удаления истинного изображения мы остаемся с представлением «усеченной пирамиды» нашей камеры-обскуры.

Точечное отверстие было заменено кончиком конуса видимости, и пленка теперь представлена ​​виртуальной плоскостью изображения.Позже мы будем использовать это представление для нашей демонстрации.

В предыдущих разделах мы интерпретировали наши входящие 3-вектора как координаты трехмерного изображения, которые преобразуются в координаты однородного двухмерного изображения. В качестве альтернативы мы можем интерпретировать эти 3-вектора как однородные 2D-координаты, которые преобразуются в новый набор 2D-точек. Это дает нам новый взгляд на внутреннюю матрицу: последовательность двумерных аффинных преобразований.

Мы можем разложить внутреннюю матрицу на последовательность преобразований сдвига, масштабирования и смещения, соответствующих перекосу оси, фокусному расстоянию и смещению главной точки, соответственно:

\ [ \ begin {align} K & = \ left ( \ begin {array} {c c c} f_x & s & x_0 \\ 0 & f_y & y_0 \\ 0 & 0 & 1 \\ \ end {массив} \правильно ) \\ [0.5em] знак равно \ underbrace { \слева ( \ begin {array} {c c c} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D-перевод} \ раз \ underbrace { \слева ( \ begin {array} {c c c} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D-масштабирование} \ раз \ underbrace { \слева ( \ begin {array} {c c c} 1 & s / f_x & 0 \\ 0 & 1 & 0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D сдвиг} \ end {align} \]

Эквивалентное разложение помещает сдвиг после масштабирования :

\ [ \ begin {align} K & = \ underbrace { \слева ( \ begin {array} {c c c} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D-перевод} \ раз \ underbrace { \слева ( \ begin {array} {c c c} 1 & s / f_y & 0 \\ 0 & 1 & 0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D сдвиг} \ раз \ underbrace { \слева ( \ begin {array} {c c c} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 и 0 и 1 \ end {массив} \правильно ) } _ \ text {2D-масштабирование} \ end {align} \]

Эта интерпретация прекрасно разделяет внешние и внутренние параметры на области 3D и 2D, соответственно.Также подчеркивается, что внутреннее преобразование камеры происходит после проекции . Одним из примечательных результатов этого является то, что внутренние параметры не могут влиять на видимость. - закрытые объекты не могут быть обнаружены с помощью простых 2D преобразований в пространстве изображения.

Демо ниже иллюстрирует обе интерпретации внутренней матрицы. Слева - интерпретация "геометрии камеры". Обратите внимание, как точечное отверстие перемещается относительно плоскости изображения при настройке \ (x_0 \) и \ (y_0 \).

Справа - интерпретация «2D-преобразования». Обратите внимание, как изменение результатов фокусного расстояния приводит к масштабированию проецируемого изображения, а изменение главной точки приводит к чистому преобразованию.

Вычисление фундаментальной матрицы и построение эпиполярных линий для камер стереовидения в OpenCV

/ *

FM_7POINT 7-балльный алгоритм

FM_8POINT 8-балльный алгоритм

FM_LMEDS алгоритм наименьшей медианы. Используется 7-балльный алгоритм.

FM_RANSAC алгоритм ANSAC. Для этого нужно минимум 15 баллов. Используется 7-точечный алгоритм

* /

cv :: Mat basicMatrix = cv :: findFundamentalMat (imagePointsLeftCamera, imagePointsRightCamera, cv :: FM_8POINT);

std :: vector leftLines, rightLines;

cv :: computeCorrespondEpilines (imagePointsLeftCamera, 1, basicMatrix, rightLines);

cv :: computeCorrespondEpilines (imagePointsRightCamera, 2, basicMatrix, leftLines);

cv :: Mat leftImageRGB (leftImage.size (), CV_8UC3);

cv :: cvtColor (leftImage, leftImageRGB, CV_GRAY2RGB);

cv :: Mat rightImageRGB (rightImage.size (), CV_8UC3);

cv :: cvtColor (rightImage, rightImageRGB, CV_GRAY2RGB);

cv :: Mat imagePointLeftCameraMatrix = cv :: Mat_ (3,1);

для (std :: size_t i = 0; i

{

cv :: Vec3d l = rightLines.at (i);

двойной a = l.val [0];

двойной b = l.val [1];

двойной c = l.val [2];

std :: cout << "------------------------ a, b, c Использование OpenCV (ax + by + c = 0) - ----------------------------- "<< std :: endl;

std :: cout << a << "," << b << "," << c << std :: endl;

std :: cout << "------------------------ вычисление a, b, c (ax + by + c = 0) - ---------------------------- "<< std :: endl;

imagePointLeftCameraMatrix.at <двойной> (0,0) = imagePointsLeftCamera [i] .x;

imagePointLeftCameraMatrix.at <двойной> (1,0) = imagePointsLeftCamera [i] .y;

imagePointLeftCameraMatrix.at <двойной> (2,0) = 1;

cv :: Mat rightLineMatrix = basicMatrix * imagePointLeftCameraMatrix;

std :: cout << rightLineMatrix.at (0,0) << "," << rightLineMatrix.at (0,1) << "," << rightLineMatrix.при <двойной> (0,2) << std :: endl;

///////////////////////////////// рисование линии на изображении /////// //////////////////////////

/ * ax + by + c = 0 * /

double x0, y0, x1, y1;

x0 = 0;

y0 = (- c-a * x0) / b;

x1 = rightImageRGB.cols;

y1 = (- c-a * x1) / b;

std :: cout << "error:" << a * imagePointsRightCamera.at (i) .x + b * imagePointsRightCamera.at (i) .y + c << std :: endl;

cv :: line (rightImageRGB, cvPoint (x0, y0), cvPoint (x1, y1), cvScalar (0,255,0), 1);

}

cv :: imwrite ("leftImageEpipolarLine.jpg", leftImageRGB);

camera_calibration: Матрица проекции и матрица камеры не совпадают.

Провел калибровку монокулярной камеры. Эти две страницы вики были моими ссылками для интерпретации результатов

[1] http://docs.ros.org/api/sensor_msgs/h...

[2] http: //wiki.ros.org/image_pipeline/Ca ...

Матрица камеры K:

  [fx 0 cx]
K = [0 fy cy]
    [0 0 1]
  

И матрица проекции P:

  [fx '0 cx' Tx]
P = [0 fy 'cy' Ty]
    [0 0 1 0]
  

В [1] написано, что для монокулярных камер с идентификатором R P [1: 3,1: 3] обычно будет равно K, потому что Tx = Ty = 0. Теперь я сделал простая калибровка монокулярной камеры с помощью стандартного пакета калибровки камеры от ROS (http: // wiki.ros.org/camera_calibration). Как видите, матрица моей камеры и матрица проекции выглядят совершенно иначе:

  image_width: 1288
image_height: 964
camera_name: камера
camera_matrix:
  ряды: 3
  cols: 3
  данные: [598.930216, 0, 659.737942, 0, 603.682487, 466.347353, 0, 0, 1]
distortion_model: plumb_bob
distortion_coefficients:
  ряды: 1
  cols: 5
  данные: [-0,220999, 0,03075, -0,00239, -0,001594, 0]
rectification_matrix:
  ряды: 3
  cols: 3
  данные: [1, 0, 0, 0, 1, 0, 0, 0, 1]
projection_matrix:
  ряды: 3
  cols: 4
  данные: [394.463257, 0, 644.75279, 0, 0, 491.095154, 450.103389, 0, 0, 0, 1, 0]
  

Кроме того, я понял, что матрица проекции меняется, если я изменяю параметр «масштаб» внутри калибратора камеры, я читал что-то о интересующей области, но нигде не нашел этот параметр.

Моя установка следующая: я ищу маркеры AR на неискаженном изображении (image_rect с использованием пакета image_proc). ARToolKit нуждается в матрице проекции для вычисления трехмерных преобразований найденных маркеров, поэтому я думаю, что ему нужно знать P .Кроме того, я делаю обратную проекцию некоторых предполагаемых маркеров и получаю координаты пикселей, поэтому я также использую для этого P (так как мне нужна проекция на исправленное изображение). Итак, как описано в [2], image_proc использует K - D - R - K ', чтобы получить неискаженное изображение. Верно ли, что я могу использовать P только впоследствии, когда я работаю только с неискаженным изображением (поиск маркеров и обратная проекция), как я это делаю сейчас?

Может кто подскажет, как вычисляется матрица проекции? Или K '?

Инструментарий Matrix Film Techniques Toolkit

Все об инструментах Film Techniques Toolkit

Фильмы отправляют нас в путешествие; мы погружаемся в миры за пределами нашего собственного.Лучшие фильмы заставляют нас задавать вопросы как о нашем мире, так и о самих себе. Однако иногда бывает трудно перевести нашу реакцию на фильм в содержательный английский анализ.

Создавая фильмы, кинематографисты комбинируют несколько техник, чтобы раскрыть смысл. Фильм сочетает визуальные элементы со слуховыми элементами для развития смысла.

Чтобы понять, как различные техники объединяются для создания смысла, посмотрите следующее видео, которое мы собрали, в котором перечислены методы, используемые в различных сценах фильма.

Набор инструментов для кинематографических приемов от Matrix Education на Vimeo

Анализируйте фильм, как кинокритик, и впечатляйте своих маркеров!

В приведенном ниже списке представлены некоторые из основных кинематографических приемов написания кинематографических текстов.

Важные приемы создания пленки

Перейти к технике:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Используется огромное количество техник в фильмах, чтобы передать смысл.Ниже приведены некоторые из обязательных техник, которые включены в глоссарии Matrix English Theory Books.

Углы

Углы камеры относятся к наклону камеры по отношению к сцене и персонажам. Необычный ракурс камеры может подчеркнуть последовательность действий, дезориентировать аудиторию и предположить отношения между персонажами.

Основные углы:

  • Низкий - Устанавливает силу персонажа или объекта
  • Уровень глаз - Позволяет аудитории лично познакомиться с персонажем (ами)
  • Высоким - Представляет субъект уязвим или лишен силы
  • Глаз червя - Представляет фигуру как очень большую и / или мощную
  • Наклон (также известный как Dutch Angle ) - Развивает психологическое беспокойство или напряжение.
  • Bird’s Eye - Часто используется для определения отношения к кадру и персонажей.

Примеры различных углов выстрела

Bridging Shot

Кадр, отмечающий течение времени в фильме. Иногда это серия газетных заголовков, календарь, коса, переживающая сезонные изменения, или стрелки, включающие часы.

Этот снимок обозначает уходящий вечер. Обратите внимание на быстрый поворот стрелок часов и быстрое таяние свечи.

Цвет

Цвет, особенно выбор цветовой палитры или схемы, может отражать настроение изделия. Цвет сцены также можно улучшить за счет освещения.

Например, в The Great Gatsby (2013) использование яркой цветовой схемы отражает роскошный образ жизни элиты Нью-Йорка в 1920-е годы.

Подробнее о цветовой символике можно узнать в Studio Binder.

Анализ цветовой палитры по фильму «Великий Гэтсби» Баз Лурмана (Warner Bros.2013), Оператор: Саймон Дагган

Cucoloris

Cucoloris - это техника освещения, при которой объект помещается между источником света и объектом для создания узорчатой ​​тени. Скоба фильм нуар .

Фильтр для Cucloris. Изображение и устройство Генри Нельсона.

Cross-Cutting

Это метод редактирования, при котором действия определяются как выполняющиеся одновременно. Камера будет переходить от одного действия к другому в другом месте, чтобы предположить, что эти вещи происходят в один и тот же момент.

Диалог

Разговор между двумя персонажами называется диалогом. Написанные сценаристами для передачи сюжета фильма, диалоги также полезны для передачи персонажей .

Растворять

Переход, который перемещается между одним снимком и другим, накладывая один снимок и затемняя первое изображение с одновременным усилением второго снимка. Это может обозначать мечты, воспоминания, течение времени или обозначать телефонные разговоры и междугороднее общение.

Рассмотрим этот пример из книги Пола Томаса Андерсона Inherent Vice (2014):

В этом растворении мы попадаем в одно из воспоминаний Ларри «Док» Спортелло, которое возникает во время телефонного звонка.

Dolly Shot

Тележка - это тележка на колесах, на которой сидят оператор и оператор. Снимок тележки - это кадр, в котором тележку толкают, чтобы она двигалась вместе с действием. Это похоже на съемку с отслеживанием, но без следов, поэтому камера может иметь более широкий диапазон движения.

Видео ниже обсуждает разницу между снимками тележки и зумом и как их можно использовать (или даже комбинировать) для создания эффектов и смысла.

Последовательность редактирования

Порядок каждого снимка и то, как они были объединены для создания сцены. Обычно это основано на раскадровке, которую использует режиссер.

Однако некоторые режиссеры, такие как Вернер Херцог, отказались от раскадровки и снимали множество сцен, которые редактировали вместе методом проб и ошибок.

Редактирование вытеснения

При редактировании вытеснения используются для перехода между сценами различными способами, а не только для вырезания. Типы протирания включают:

  • Горизонтальное вытеснение - протирание перемещается горизонтально по экрану
  • Вертикальное протирание - протирание движется вертикально по экрану
  • протирание по диагонали - протирание движется по диагонали по экрану
  • Звездная салфетка - Салфетка представляет собой форму расширяющейся звезды, чтобы продемонстрировать что-то особенное
  • Heart Wipe - Вытирание принимает форму расширяющегося или сжимающегося сердца, чтобы проиллюстрировать романтику или дружбу
  • Clock Wipe - The wipe - это круговое движение, подобное стрелке часов, для иллюстрации хода времени
  • Matrix wipe - узорчатый переход между сценами

Примените свои знания о кино на практике!

Изучение английского языка не должно прекращаться, потому что ты дома! Мы предоставляем вам четкие и структурированные видеоролики онлайн-уроков, качественные ресурсы и форумы, чтобы задавать вопросы и отзывы учителям Matrix!

Узнайте больше о нашем онлайн-курсе английского языка Matrix + прямо сейчас.

Установочный снимок

Тип чрезвычайно длинного кадра, который устанавливает контекст - время и обстановку - сцены или фильма. Часто для создания снимков используются известные достопримечательности или места, такие как мост Харбор-Бридж в Сиднее.

Eyeline Match

Тип кадра, при котором кадр, в котором персонаж смотрит на что-то, преобразуется в кадр того, что он смотрел на том же уровне. Этот тип нарезки используется, чтобы показать зрителям то, на что они смотрят.

Fade In / Out

Техника редактирования, при которой кадр постепенно исчезает из одного кадра, затем становится черным, прежде чем перейти в новый кадр.

Flashback

Образы, относящиеся к предыдущим событиям в жизни персонажей. Воспоминания могут быть использованы для предсказаний будущих событий.

Intertitle

Текст, который печатается на фоне и помещается между отснятыми сценами путем редактирования. В немом кино интертитров могут передавать диалог и экспозицию.

Intertitle из Metropolis Реж. Fritz Lang (1927)

Iris

Подобно другим фильтрам редактирования , это тип перехода, при котором радужная оболочка экрана закрывается вокруг определенного объекта на экране.Их можно использовать для обозначения мечтаний, создания драматических переходов или обозначения конца сцены.

Переход в прыжке

Переход, который частично перемещается вперед во времени. Эти снимки фокусируются на одном и том же объекте, но либо используются другой угол, либо объект находится в другом положении, чтобы показать, что время переместилось вперед во времени. Прыжковые сокращения обычно используются, чтобы показать, как время идет вперед.

Освещение

Освещение способствует настроению фильма и предлагает интерпретации персонажа.Они хорошие? Они гнусные?

Низкое освещение подчеркивает тени в кадре, в то время как освещение сверху или снизу может указывать на то, что персонаж обладает зловещими качествами.

Пример зловещей кошки, освещенной снизу.

Пример теней от Low Key Lighting.

Long Take

Также называется последовательным снимком (и иногда его называют однократным снимком )

Match Cut

Переход от одного кадра к другому, похожему на кадр, который соответствует композиции первого кадра.

Mise en scène

Mise en scène переводится как «то, что помещено в сцену». Это французское выражение относится к композиции сцены, включая размещение персонажей, костюму , делает - вверх и настройке .

Монтаж

Монтаж - это тип монтажной последовательности , в которой серия кадров быстро воспроизводится для создания повествования. Часто монтаж сопровождается объединяющим произведением из музыки , чтобы передать доминирующее настроение , связанное с секвенцией.

Анимированный GIF: монтаж из «Метрополиса» Фрица Ланга (1927)

Настроение

Под настроением понимаются чувства, вызываемые комбинацией всех элементов на экране и сопровождающим звуком. Другой способ обозначить настроение - это обсудить атмосферу .

Музыка

Музыка может передать тему , настроение и атмосферу . В фильмах бывает разная музыка.

  • Оценка - это экстра-диегетическая музыка, написанная для фильма и призванная вызвать у зрителей желаемое настроение фильма.
  • Музыка, которую слышат герои фильма, называется диегетическая музыка.

Over the Shoulder (OTS)

Тип последовательной съемки или снимка с отслеживанием, когда камера следует за персонажем, следуя за ним и стреляя через плечо. Как и снимок с точки зрения, снимок через плечо фокусируется (то есть фокусируется) на опыте персонажей.

One-Shot

Также упоминается как Long Take или Sequence Shot .Однокадровый снимок на самом деле является типом длинного кадра или последовательного кадра, в котором эффект одного кадра создается посредством редактирования. Например, в фильме Алехандро Г. Иньярриту 2014 года «Бердман» используется тщательный монтаж, чтобы создать впечатление единственного дубля.

В некоторых случаях одноразовый снимок используется для обозначения всего фильма, снятого за один дубль, например, немецкий фильм 2015 года «Виктория».

Панорамный снимок

Снимок, в котором камера поворачивается горизонтально вокруг фиксированной точки, чтобы следовать за объектом.

Снимок с точки зрения (POV)

Кадр, сделанный с точки зрения персонажа, как в видеоигре от первого лица. Кадры с точки зрения фокусируют (то есть фокусируют) опыт персонажа.

Rack Shot

Снимок, в котором камера смещает фокус, удерживая тот же снимок, чтобы сфокусировать другой объект. Стойки меняют глубину выстрела.

Пример ниже из сериала Шерлок. В нем акцент смещается с Шерлока на Ватсона.

Анимированный GIF: на этом снимке стойки фокус смещается с Шерлока на переднем плане на Ватсона на заднем плане.

Сцена

Единица повествования, используемая для разделения драматического текста или фильма. Сцена обычно происходит в одном месте и фокусируется на одном действии в один момент различной продолжительности.

Настройка

Место, где происходит действие фильма.

Последовательный снимок

Последовательный снимок - это один длинный дубль, показывающий серию действий, происходящих одно за другим в одном кадре.Последовательные кадры иногда называют длинных кадров и одноразовых . Последовательные снимки очень сложно сделать и могут иметь довольно много смысла.

Известным примером является "Копакабана" Мартина Скорсеса, снятая из его фильма 1990 года " Goodfellas".

Этот снимок иллюстрирует богатство и связи Генри Хиллса, когда он хвастается перед свиданием. Этот дубль сочетает в себе взгляды через плечо и точки зрения.

Тип снимка

Тип снимка показывает, насколько близко или далеко камера находится от персонажей.Типы снимков варьируются от Extreme Long Shot (XLS), где персонажи могут быть очень маленькими и встроенными в пейзаж, до Extreme Close Up (XCU), где часть лица персонажа составляет весь кадр.

Выстрелы:

  • Экстремальный дальний выстрел (XLS)
  • Дальний выстрел (LS)
  • Средний дальний выстрел (MLS)
  • Средний выстрел (MS)
  • Средний крупный план Вверх (MCU)
  • Close Up (CU)
  • Super Close Up (SCU)
  • Extreme Close Up (XCU)

Изображение: Примеры различных типов кадров

Звук

Звук фильма помогает создать атмосферу - это может включать:

Как и музыку, звук можно разделить на:

  • Diegetic : , происходящие в мир фильма
  • Вне-диегетический (происходящий вне мира фильма)

Символизм

Объект, используемый для внушения идей в дополнение или за пределами их буквального смысла.Например, стеклянные туфельки в модели Cinderella символизируют возможность, которую имеет Золушка, жить другой жизнью. Внимательно смотрите фильмы, чтобы определить символы и их потенциальное значение для сюжета. Если символ повторяется на протяжении всего фильма, это мотив .

Анимированный GIF: это GIF-изображение от Сэма Мендеса «Красота по-американски» (1999). Танцующий пластиковый пакет символизирует красоту вещей, которые часто выбрасываются. Мешок для многих - мусор, но его танец на ветру прекрасен.

Steady Cam

Тип камеры, который используется в последовательностях действий. Устойчивая установка кулачка позволяет оператору носить камеру, чтобы он мог следить за последовательностью действий, не делая снимок слишком резким.

Переходы

Способ перехода между кадрами. Переходы включают сокращений , переходов и переходов (конкретные определения см. Выше).

Это хорошее видео, в котором объясняются эти различные методы.

Наклон

Когда камера наклоняется в кадре, чтобы показать объект вдали от горизонтальной оси.

Заголовок

См. intertitle

Отслеживающий снимок

Снимок, который следует за движущимся объектом.

Two Shot

Кадр с двумя персонажами, используемый для установления или развития их отношений.

Масштаб

Камера увеличивает или уменьшает масштаб, чтобы сфокусироваться на объекте или показать, как далеко он находится.Масштабирование можно использовать для создания драматического эффекта или для увеличения масштаба изображения объектов относительно друг друга.

См. Видео Dolly Shot выше, где обсуждается разница между Zooms и Dolly Shot .

© Matrix Education и www.matrix.edu.au, 2020. Несанкционированное использование и / или копирование этого материала без явного письменного разрешения автора и / или владельца этого сайта строго запрещено.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *