Разное

Фотоаппараты цифровые зеркальные – Купить Зеркальные фотоаппараты со сменными объективами в интернет-магазине М.Видео, низкие цены, отзывы владельцев. Большой каталог, описание, характеристики

Зеркальные цифровые фотоаппараты - это... Что такое Зеркальные цифровые фотоаппараты?

Цифровой зеркальный фотоаппарат Canon EOS 20D с объективом Canon 17-40 4L

Цифровой зеркальный фотоаппарат, DSLR (Digital single-lens reflex camera) — цифровой фотоаппарат с зеркальным видоискателем.

Особенности конструкции

Подробнее о конструкции и принципах работы, см. в статье Зеркальный фотоаппарат.

Оптический видоискатель без параллакса

Принципиальным преимуществом DSLR перед остальными типами цифровых камер является оптический видоискатель, унаследованный от плёночных зеркальных камер. Такой тип видоискателя не подвержен параллаксу, поскольку свет в него попадает непосредственно через объектив, в то время как видоискатели у незеркальных цифровых камер получают свет через вспомогательное окошко, расположенное в стороне от оптической оси основного объектива.

Компактные цифровые камеры также позволяют оценить картинку перед съёмкой, отображая её на ЖК-экране вместо видоискателя. Однако такой способ имеет свои недостатки: задержку (лаг), относительно невысокое разрешение, посредственную цветопередачу и яркость, что может затруднить работу в некоторых условиях, например на ярком солнце или при съёмке динамичных сюжетов. Видоискатель DSLR отображает картинку в реальном времени, с высокой яркостью и разрешением.

До недавнего времени в DSLR ЖК-экран использовался только для просмотра отснятых кадров и доступа к меню камеры, в то время как кадрирование было возможно только через оптический видоискатель. В некоторых случаях это вносило существенные неудобства в процесс съёмки, например, если нужно было располагать фотоаппарат на уровне земли или снимать в толпе поверх голов. В то время как на многих компактных цифровых фотокамерах в таких ситуациях можно было легко снимать используя поворотный ЖК-экран, владельцам DSLR приходилось снимать наугад или использовать дорогие и неудобные насадки на видоискатель. Однако в январе 2006 компания Olympus представила камеру E-330 — в ней впервые на рынке DSLR была реализована возможность кадрирования по ЖК-экрану. В настоящий момент зеркальные цифровые камеры с возможностью визирования по ЖК-экрану имеют в своей продуктовой линейке практически все крупные производители. В описании технических характеристик камеры эта возможность обычно обозначается как "Live View". Существует несколько принципиально отличающихся способов реализации возможности визирования по ЖК-экрану для DSLR - одни производители используют для этого полупрозрачное зеркало и дополнительную матрицу, отвечающую только за визирование, другие используют основную матрицу камеры (в этом случае визирование по ЖК-экрану происходит при поднятом зеркале).

Быстрый фазовый автофокус

Подробнее см. статью Автофокус

В цифровых зеркальных фотоаппаратах используется фазовый автофокус. Это очень быстрый и точный метод, однако для его работы необходимо чтобы в оптическом тракте камеры были установлены специальные датчики. Это не составляет трудности сделать в зеркальных фотоаппаратах, так как там имеется зеркало, отклоняющее световые лучи в видоискатель и одновременно на датчики автофокуса. После нажатия на спуск зеркало быстро убирается, позволяя световым лучам беспрепятственно попадать на матрицу. В компактных цифровых камерах матрица используется не только во время собственно съёмки кадра, но и в остальное время для работы электронного видоискателя или ЖК-дисплея, поэтому ввести в оптический тракт датчики автофокуса, заслоняющие матрицу, нельзя. По этой причине незеркальные цифровые камеры, как правило, используют более медленный контрастный тип автофокуса, не требующий отдельных датчиков.

Сменная оптика

Возможность использовать сменную оптику, выбирая объектив наиболее пригодный для конкретной потребности, а также возможность использования специализированных объективов, постепенное удешевление DSLR — одни из основных факторов, способствующих популярности цифровых зеркальных камер.

Практически все объективы для DSLR имеют бо́льшую светосилу, чем объективы в компактных цифровых камерах (в особенности, т. н. «фикс-объективы» с постоянным фокусным расстоянием). Это позволяет большему количеству света попадать на матрицу, и, таким образом, появляется возможность использовать более короткие выдержки при съёмке, что особенно важно при фотографировании динамичных объектов (балет, спорт и т. п.) в условиях, когда нельзя пользоваться фотовспышкой. Таким образом, приходится признать, что на данный момент развития, подавляющее большинство компактных фотокамер (т. н. в просторечии «мыльниц») не даёт возможности производить качественную фотосъёмку подобных культурных мероприятий в местах со слабой освещённостью.

Большинство объективов, разработанных для плёночных зеркальных камер, могут быть использованы и на цифровых, но обратное не всегда верно. Новые объективы для DSLR могут использовать такой же тип байонета, как и плёночные камеры, но при этом включать в себя усовершенствованные электронные схемы (управление диафрагмой, оптический стабилизатор и т. д.), которые могут не заработать при установке на старые камеры. Некоторые объективы, разработанные для DSLR, имеют уменьшенный размер изображения (так как на многих цифровых зеркальных камерах размер матрицы меньше размера стандартного 35-мм кадра) и поэтому при установке на плёночную или полнокадровую цифровую камеру такие объективы будут давать затемнение (виньетирование) по углам кадра. Кроме того у некоторых производителей новые объективы физически несовместимы со старыми плёночными камерами (например, объективы Canon EF-S). Тенденция к переходу на «цифру» видна и у производителей цифровых фотокамер. Так, например, в 2006 фирмой «Nikon D40, которая вообще не предполагает в себе полноценного использования старых объективов, которые были разработаны «для фотоплёнки».

Характеристики матрицы

Матрицы, применяемые в цифровых зеркальных камерах, как правило, значительно превосходят по физическим размерам матрицы компактных цифровых камер. Больший размер матрицы позволяет добиться лучшего качества изображения: меньших шумов, большей чувствительности и динамического диапазона. Кроме того, более крупная матрица, при прочих равных, обеспечивает меньшую ГРИП, что обеспечивает фотографа дополнительным художественным инструментом. Матрица типичной цифровой зеркальной камеры так называемого «любительского» уровня имеет размеры 22×15 мм (формат кадра -

Контроль ГРИП

Больший физический размер матриц применяемых в DSLR, а также применение светосильных объективов, позволяют добиться малой глубины резко изображаемого пространства (ГРИП) и сделать удобным контроль над ним. Малая ГРИП позволяет, например, при съёмке портрета сделать акцент на лицо, а задний план сделать более размытым, чтобы он не отвлекал внимание зрителя.

С другой стороны, сравнительно малая ГРИП у зеркальных камер, может быть серьезным недостатком при репортажной съемке.

Производители зеркальных цифровых фотоаппаратов

Другие производители указаны в списке: Производители фотоаппаратуры.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Цифровой зеркальный фотоаппарат - это... Что такое Цифровой зеркальный фотоаппарат?

Цифровой зеркальный фотоаппарат, DSLR (Digital single-lens reflex camera) — цифровой фотоаппарат на базе однообъективной зеркальной камеры (то есть с зеркальным видоискателем).

Особенности конструкции

Подробнее о конструкции и принципах работы, см. в статье Однообъективный зеркальный фотоаппарат.

Оптический видоискатель

Принципиальным преимуществом DSLR перед остальными типами цифровых камер является зеркальный оптический видоискатель, унаследованный от плёночных однообъективных зеркальных камер. Такой тип видоискателя не подвержен параллаксу, поскольку свет в него попадает непосредственно через объектив, в то время как оптическая ось видоискателя у незеркальных цифровых камер смещена относительно оптической оси основного объектива.

Компактные цифровые камеры также позволяют оценить картинку перед съёмкой, отображая её на ЖК-экране вместо видоискателя. Однако такой способ имеет свои недостатки: задержку (лаг), относительно невысокое разрешение, посредственную цветопередачу и яркость, что может затруднить работу в некоторых условиях, например, на ярком солнце или при съёмке динамичных сюжетов[источник не указан 218 дней]. Видоискатель DSLR отображает картинку в реальном времени, с высокими яркостью и разрешением.

До недавнего времени в DSLR ЖК-экран использовался только для просмотра отснятых кадров и доступа в меню камеры, в то время как кадрирование было возможно только через оптический видоискатель. В некоторых случаях это вносило существенные неудобства в процесс съёмки, например, если нужно было располагать фотоаппарат на уровне земли или снимать в толпе поверх голов. В то время как многими компактными цифровыми фотокамерами в таких ситуациях можно было легко снимать, используя поворотный ЖК-экран, владельцам DSLR приходилось снимать наугад или использовать дорогие и неудобные насадки на видоискатель. Однако в январе 2006 компания Olympus представила камеру E-330 — в ней впервые на рынке DSLR была реализована возможность кадрирования по ЖК-экрану. В настоящий момент зеркальные цифровые камеры с возможностью визирования по ЖК-экрану имеют в своей продуктовой линейке практически все крупные производители. В технических характеристиках камеры эта возможность обычно обозначается как «Live View». Существует несколько принципиально отличающихся способов реализации возможности визирования по ЖК-экрану для DSLR — одни производители используют для этого полупрозрачное зеркало и дополнительную матрицу, отвечающую только за визирование, другие используют основную матрицу камеры (в этом случае визирование по ЖК-экрану происходит при поднятом зеркале).

Фазовый автофокус

Подробнее см. статью Автофокус

В цифровых зеркальных фотоаппаратах используется фазовый автофокус. Это очень быстрый и точный метод, однако для его работы необходимо, чтобы в оптическом тракте камеры были установлены специальные датчики. Это не составляет трудности сделать в однообъективных зеркальных фотоаппаратах, так как там имеется зеркало, отклоняющее световые лучи в видоискатель и одновременно на датчики автофокуса. После нажатия на спуск зеркало быстро убирается, позволяя световым лучам беспрепятственно попадать на матрицу. В некоторых фотокамерах (полупрозрачное) зеркало в момент съёмки не убирается, что позволяет использовать фазовый принцип автоматической фокусировки и при видеосъёмке.

[1] В компактных цифровых камерах матрица используется не только во время собственно съёмки кадра, но и в остальное время для работы электронного видоискателя или ЖК-дисплея, поэтому ввести в оптический тракт датчики автофокуса, заслоняющие матрицу, нельзя. По этой причине незеркальные цифровые камеры, как правило, используют более медленный контрастный тип автофокуса, не требующий отдельных датчиков.

Сменная оптика

Возможность использовать сменную оптику, выбирая объектив, наиболее пригодный для конкретной потребности, а также возможность использования специализированных объективов, постепенное удешевление DSLR — одни из основных факторов, способствующих популярности цифровых однообъективных зеркальных камер. Бюджетные Zoom-объективы для DSLR имеют меньшую светосилу, чем объективы в компактных цифровых камерах (от 1:3,5 против 1:2,8). «Фикс-объективы» напротив — б

ольшую (типично 1:1,4-1:2,8).

Большинство объективов, разработанных для плёночных однообъективных зеркальных камер, могут быть использованы и на цифровых, но обратное не всегда верно. Новые объективы для DSLR могут использовать такой же тип байонета, как и плёночные камеры, но при этом включать в себя усовершенствованные электронные схемы (управление диафрагмой, оптический стабилизатор и т. д.), которые могут не заработать при установке на старые камеры. Некоторые объективы, разработанные для DSLR, имеют уменьшенный размер изображения (так как на многих цифровых однообъективных зеркальных камерах размер матрицы меньше размера стандартного 35-мм кадра) и поэтому при установке на плёночную или полнокадровую цифровую камеру такие объективы будут давать затемнение (виньетирование) по углам кадра. Кроме того у некоторых производителей новые объективы физически несовместимы со старыми плёночными камерами (например, объективы Canon EF-S). Тенденция к переходу на «цифру» видна и у производителей цифровых фотокамер. Так, например, в 2006 фирмой «Nikon» была представлена любительская модель Nikon D40, которая вообще не предполагает в себе полноценного использования старых объективов, разработанных «для фотоплёнки».

Характеристики матрицы

Матрицы, применяемые в цифровых однообъективных зеркальных камерах, как правило, значительно превосходят по физическим размерам матрицы компактных цифровых камер. Больший размер матрицы позволяет добиться лучшего качества изображения: меньших шумов, большей светочувствительности и динамического диапазона. Кроме того, более крупная матрица, при прочих равных, обеспечивает меньшую ГРИП, что обеспечивает фотографа дополнительным художественным инструментом. Матрица типичной цифровой однообъективной зеркальной камеры так называемого «любительского» уровня имеет размеры 22×15 мм (формат кадра — APS-C). Матрица фотокамеры профессионального уровня может доходить и до классического «пленочного» 35 мм формата (узкий формат) с размером кадра 24×36 мм (Canon 5D, Canon 1DS Mark, Nikon D3, Sony A900), что позволяет добиваться снимков, по естественности и качеству весьма близких к снимкам на фотоплёнке. Матрицы незеркальных цифровых камер топ-класса как правило имеют размер 8,8×6,6 мм (формат 2/3), что дает площадь в 5,6 раз меньше. В более простых незеркальных камерах используются матрицы ещё меньшего размера. Впрочем, необходимо отметить, что в последнее время стали производиться незеркальные цифровые камеры с форматом кадра APS-C, который раньше использовался только в зеркальных аппаратах.

Контроль ГРИП

Больший физический размер матриц, применяемых в DSLR, а также применение светосильных объективов позволяют добиться малой глубины резко изображаемого пространства (ГРИП) и сделать удобным контроль над ним. Малая ГРИП позволяет, например, при съёмке портрета сделать акцент на лицо, а задний план сделать более размытым, чтобы он не отвлекал внимание зрителя.

Производители однообъективных зеркальных цифровых фотоаппаратов

См. также

Ссылки

  1. Camera speed redefined: Sony introduces first Translucent Mirror Technology digital cameras Light, compact α55 and α33: up to 10fps shooting with high-speed AF tracking and Full HD movie. Sony Europe.

dic.academic.ru

Цифровой зеркальный фотоаппарат — Википедия. Что такое Цифровой зеркальный фотоаппарат

Цифровой зеркальный фотоаппарат, DSLR (англ. Digital single-lens reflex camera) — цифровой фотоаппарат, построенный на основе принципа однообъективной зеркальной камеры, использовавшегося в плёночной фотографии. Понятие цифрового зеркального фотоаппарата подразумевает однообъективную схему, поскольку двухобъективная в цифровой фотографии широкого применения не нашла.

Историческая справка

Попытки создать портативные электронные устройства для записи неподвижных изображений начались сразу же после изобретения Уиллардом Бойлом и Джорджем Смитом прибора с зарядовой связью в 1969 году[1]. Однако, первые зеркальные видеофотоаппараты (англ. Still Video Camera), такие как «Sony Mavica» 1981 года, «Canon RC-701» и «Nikon Still Video Camera 1», появившиеся в 1986 году, не были цифровыми, поскольку основаны на аналоговой записи изображения в одном из стандартов цветного телевидения[2][3].

Первой зеркальной цифровой фотокамерой можно считать гибридное устройство «Electro-Optic Camera», спроектированное электронным подразделением «Kodak» по заказу правительства США с использованием профессионального фотоаппарата Canon New F-1[4][5]. Основой стала созданная «Кодаком» чёрно-белая ПЗС-матрица «M1», разрешение которой впервые превысило 1 мегапиксель[6]. Она размещалась в блоке, закрепляемом на съёмной задней крышке фотоаппарата, единственный экземпляр которого выпущен в 1988 году и эксплуатировался военными. В дальнейшем созданы ещё две подобные камеры «Tactic Camera» для оборонных задач[4].

Полученные гибриды оказались слишком громоздкими и неудобными, и следующим этапом через год стала разработка проектов «IRIS» для фотожурналистов и «Hawkeye II» для военных[7]. Оба прототипа создавались на основе зеркального фотоаппарата «Nikon F3», но чёрно-белый «IRIS» не нашёл спроса на рынке новостной фотографии. Часть военных приставок комплектовалась новой матрицей «М3» с фильтром Байера, ставшей первой цветной матрицей с разрешением более 1 мегапикселя[6]. Она же стала основой для первого коммерчески успешного и серийно выпускаемого цифрового гибрида «Kodak DCS 100», также собранного вокруг фотоаппарата «Nikon F3 HP». Гибрид, выпущенный в 1991 году, состоял из цифрового задника с ПЗС-матрицей, подключённого кабелем к внешнему блоку, носимому на плече[6]. Внешний блок DSU (англ. Digital Storage Unit) содержал 3,5-дюймовый жёсткий диск ёмкостью 200 мегабайт, на который записывались снимки, формируемые приставкой к фотоаппарату. При этом задник мог быть отстыкован и фотоаппарат вновь становился пригодным для съёмки на плёнку. Устройство стало первым, ориентированным на совместную работу с компьютером, а не видеомагнитофоном, как это было в большинстве предыдущих разработок других производителей[8].

Перечисленные гибриды создавались гражданским (англ. Professional Photography Division) и оборонным (англ. Federal Systems Division) подразделениями «Kodak» независимо от «Никона», выпустившего совместно с NASA цифровой «Nikon F4 ESC NASA» с задником, оснащённым чёрно-белой матрицей в 1 мегапиксель[6]. Дальнейшие разработки были сосредоточены в компаниях Fujifilm, Sony и гражданском секторе компании «Kodak», с 1994 до 1998 года выпустившей более компактные устройства серии DCS, стыкующиеся с фотоаппаратами «Nikon F801», «Nikon F90» и «Canon EOS-1N»[9]. Все эти разработки стали промежуточным этапом перед созданием полноценных цифровых зеркальных фотоаппаратов неразъёмной конструкции. К началу 2000-х годов Canon и Nikon создали профессиональные линейки фотоаппаратов «Canon EOS-1D» и «Nikon D1», основой при проектировании которых послужили предыдущие опыты с гибридными камерами. Возможность замены плёнки цифровым задником с матрицей осталась только в среднеформатных зеркальных фотоаппаратах, предназначенных для студийной съёмки.

Появление цифровых зеркальных фотоаппаратов потребительского уровня можно отнести к концу 2003 года, когда начались массовые продажи камеры «Canon EOS 300D», стоимость которой впервые оказалась ниже символической границы в 1000 долларов[10][11]. Все предыдущие образцы, стоившие первоначально в диапазоне от 5 до 20 тысяч долларов, можно отнести только к профессиональному сектору рынка. С началом продаж для массовой публики цифровые зеркальные фотоаппараты начали бурно развиваться, повышая разрешающую способность матриц, их размеры и скорость обработки данных. Постепенно качество цифровой фотографии оказалось сопоставимым с классической плёночной, а персональные компьютеры стали доступны массовому покупателю. С середины 2000-х годов цифровая аппаратура практически полностью вытеснила плёночные аналоги, прежде всего в сфере фотожурналистики, традиционно ориентированной на зеркальный видоискатель. В любительской фотографии с начала 2010-х годов зеркальный видоискатель начал вытесняться беззеркальными фотоаппаратами со сменной оптикой, а также камерафонами[12][13]. Так, если в 2012 году в мире продано более 16 миллионов цифровых зеркальных фотоаппаратов, к 2017-му эта цифра снизилась более, чем вдвое, составив 7,5 миллионов[14].

Особенности конструкции

Главными достоинствами зеркальных фотоаппаратов по сравнению с другими типами цифровой аппаратуры считается возможность использования сменной оптики, дающей такое же изображение как на плёночных аналогах, и матрица относительно больших размеров, обеспечивающая высокое качество цифрового изображения[15]. Совершенствование электронных технологий визирования сводит к минимуму главное преимущество зеркальной схемы: наличие беспараллаксного оптического видоискателя, дающего изображение, идентичное получаемому в фокальной плоскости.

Фазовый автофокус

Главным преимуществом зеркальных фотоаппаратов, по сравнению с беззеркальными считается возможность использования фазового автофокуса. Это наиболее быстрая и точная технология из всех существующих, однако для её работы необходимо наличие оптического тракта, направляющего свет от объектива на отдельный датчик. Такой принцип легко осуществим в однообъективных зеркальных фотоаппаратах при помощи основного и вспомогательного зеркал, но сопряжён с большими сложностями в беззеркальных конструкциях, производящих автофокусировку непосредственно по изображению, формируемому матрицей[16]. При этом используется сравнение его контраста при разных положениях объектива. Для повышения скорости фокусировки беззеркальных фотоаппаратов некоторые производители интегрируют фазовые датчики непосредственно в светочувствительную матрицу, но быстродействие автофокуса зеркальных фотоаппаратов до сих пор остаётся непревзойдённым[17][18].

Использование варианта зеркальной схемы с неподвижным полупрозрачным зеркалом позволяет применять фазовый принцип автофокуса в режиме «Live View», в том числе при видеозаписи, но при этом необходимо тщательное поддержание чистоты дополнительной оптической поверхности, не защищённой, в отличие от матрицы, даже затвором от пыли и загрязнений[19]. Кроме того, наличие полупрозрачного зеркала снижает светосилу всей системы и уменьшает яркость изображения в видоискателе. По такой схеме построена линейка фотоаппаратов Sony Alpha SLT.

В 2015 году Sony предложила ряд технологий, позволяющих реализовать в беззеркальных аппаратах быстрый гибридный автофокус, использующий ряд специальных микролинз и выделенные пиксели по принципу, сходному с фазовым автофокусом[20][21].

Размер матрицы

Светочувствительные матрицы, устанавливаемые в цифровых зеркальных камерах, значительно превосходят по физическим размерам сенсоры компактных фотоаппаратов[22][23]. Большой кадр позволяет использовать элементарные фотодиоды увеличенных размеров при том же их количестве, определяющем разрешение. В результате возрастает качество изображения: снижаются шумы при тех же значениях светочувствительности, и расширяется динамический диапазон[24]. Матрица типичной цифровой зеркальной камеры потребительского класса имеет формат APS-C (22×15 мм), однако наблюдается тенденция увеличения сенсора до полнокадрового (Canon EOS 6D, Sony A99)[25].

Матрицы профессиональных фотокамер несколько больше — формата APS-H (серия Canon EOS-1D), но могут достигать размеров «классического» малоформатного кадра размером 24×36 мм (Canon EOS 5D Mark III, Canon EOS-1D X Mark II, Nikon D5) и даже превосходить его (Leica S2, Mamiya 645D или Hasselblad HxD-серий), что позволяет добиваться отличной цветопередачи и отношения сигнал/шум. Размер матриц компактных цифровых камер, как правило, не превышает 7,2×5,3 мм (формат 1/1,8″) и в большинстве своём составляет 4,5×3,4 мм (формат 1/3,2″), давая площадь в 56,5 раз меньше, чем малоформатный «полный» кадр (864 и 15,3 квадратных миллиметров соответственно)[26]. Приемлемый уровень шумов и качество изображения такие матрицы могут обеспечить только при минимальных значениях ISO и ярком освещении.

В то же время, небольшие матрицы позволяют конструировать более компактную и лёгкую оптику с большой светосилой. Так, кратность и светосила зум-объективов компактных камер обычно недостижимы для оптики, рассчитанной на малоформатную матрицу или плёночный кадр, а также связаны с многократным удорожанием. Телеобъективы, предназначенные для небольшого размера кадра, также гораздо компактнее и светосильнее крупноформатных аналогов. Это преимущество миниатюрных матриц используется в псевдозеркальных цифровых фотоаппаратах, обычно оснащаемых несъёмным компактным «суперзумом» большой кратности, перекрывающей значительную часть диапазона фокусных расстояний, используемых в повседневной практике съёмки[27]. Такие фотоаппараты, более дешёвые, чем зеркальные, занимают существенную часть рынка аппаратуры для фотолюбителей, вытесняя более сложные в обращении DSLR. Кроме того, несъёмная конструкция объектива исключает попадание пыли и загрязнений на поверхность матрицы, неизбежное в зеркальных фотоаппаратах со сменной оптикой.

Характер изображения

Несмотря на важность физических характеристик матриц большого размера, более существенным преимуществом зеркальной аппаратуры считается характер изображения, создаваемого объективами от малоформатных фотоаппаратов. Фотообъективы обладают относительно большими фокусными расстояниями по сравнению с оптикой видеокамер и компактных фотоаппаратов. В результате, при тех же углах поля зрения и относительных отверстиях, глубина резко изображаемого пространства получаемого изображения значительно меньше, чем в миниатюрных форматах, что предоставляет возможность использования традиционных в профессиональной фотографии приёмов, позволяющих подчеркнуть глубину пространства и отделить основной объект съёмки от фона.

Ещё одним важным обстоятельством считается принципиально более высокое качество оптического изображения, напрямую зависящее от физического размера кадра вследствие дифракционного ограничения любых оптических систем[24][28]. Другими словами, как и в плёночной фотографии, качество напрямую связано с размером кадра, независимо от разрешения светочувствительного элемента. По этим причинам максимальная детализация достижима в современной цифровой фотографии только при помощи цифровых задников среднего формата или зеркальных фотоаппаратов с полнокадровой матрицей.

В то же время, появление нового класса беззеркальных фотоаппаратов в конце 2000-х годов, разрушило монополию «зеркалок» на матрицу большого размера[29][30]. Некоторые типы таких фотоаппаратов оснащаются матрицами размера Микро 4:3 и APS-C, а вскоре после них появилась «Sony A7», с полнокадровой матрицей[16].

Оптический видоискатель

Принципиальным отличием цифровых зеркальных фотоаппаратов от остальных типов цифровых камер является зеркальный видоискатель, который считается наиболее совершенным из всех оптических и обладает такими преимуществами, как полное отсутствие параллакса, возможность визуальной оценки глубины резкости и точное совпадение границ кадра с полем зрения любых сменных объективов, в том числе зумов[31]. Кроме того, это единственный тип оптического визира, пригодный для съёмки через оптические приборы, макросъёмки и использования специальной оптики, в том числе шифт-объективов[32]. В отличие от дальномерных фотоаппаратов, точность ручной и автоматической фокусировки с помощью зеркального видоискателя не зависит от фокусного расстояния объектива[33][34]. По сравнению с компактными цифровыми фотоаппаратами зеркальные обеспечивают более высокое быстродействие и удобство управления изображением, видимым без электронного преобразования со всеми оптическими нюансами.

К недостаткам зеркального видоискателя можно отнести его громоздкость и сложность, особенно заметные в сравнении с новейшими беззеркальными камерами[30]. Кроме того, наличие подвижного зеркала затрудняет конструирование короткофокусной оптики из-за необходимости удлинения заднего отрезка. «Ретрофокусная» конструкция широкоугольных объективов для зеркальных камер считается менее совершенной, чем симметричная, используемая во всех остальных типах аппаратуры. Быстрое движение зеркала непосредственно перед съёмкой приводит к вибрациям, недопустимым в момент экспозиции[34]. Сложность фокусировочного тракта и наличие дополнительных оптических элементов высокой точности, таких как пентапризма и фокусировочный экран приводят к удорожанию всей конструкции[30]. Взаимное расположение элементов видоискателя и модуля автофокуса требует точной юстировки, от которой зависит корректность ручной и автоматической фокусировки. Ещё одним недостатком зеркального видоискателя является ограничение максимальной частоты серийной съёмки за счёт инерционности зеркала и его приводов[17].

В то же время, электронный видоискатель беззеркальных цифровых камер обладает теми же достоинствами, что и зеркальный, отображая будущий снимок на жидкокристаллическом дисплее. Традиционные недостатки такого видоискателя — перегрев фотоматрицы с ухудшением изображения, невысокое разрешение дисплея и его возможная засветка ярким освещением — к началу 2010-х годов преодолены за счёт многократно улучшившихся характеристик фотоматриц, TFT-экранов и их удешевления. А использование электронного видоискателя окулярного типа предотвращает засветку и приближает технологию съёмки к традиционной «зеркальной». Запаздывание электронного изображения, заметное на первых моделях компактной аппаратуры, с повышением быстродействия процессоров сведено практически к нулю[14]. В то же время, задержка срабатывания затвора современных беззеркальных фотоаппаратов сопоставима с зеркальными, у которых этот параметр также превышает показатели дальномерных и шкальных камер из-за наличия подвижного зеркала. Такое достоинство оптического видоискателя, как энергонезависимость, в цифровых устройствах второстепенно, однако значительно снижает энергопотребление, особенно в режиме ожидания.

Режим Live View

Использование электронного видоискателя в цифровых зеркальных фотоаппаратах классической конструкции невозможно из-за того, что светочувствительная матрица во время визирования закрыта затвором и зеркалом, обеспечивающим работу оптического визира. В январе 2006 года компания Olympus представила зеркальную камеру E-330, в которой впервые реализована возможность кадрирования по изображению, получаемому не с дополнительной матрицы, размещённой в оптическом тракте видоискателя, а с основной[35]. Для этого фотоаппарат переводится в режим, получивший торговое название «Live View». В этом режиме визирование осуществляется при поднятом зеркале и открытом затворе так же, как во всех других типах цифровой аппаратуры. Оптический видоискатель в этом случае не работает, поскольку закрыт поднятым зеркалом[* 1]. Непосредственно перед съёмкой затвор закрывается и затем производит одну или несколько экспозиций, в зависимости от установленного режима протяжки. Зеркало остаётся поднятым до тех пор, пока не выключен режим «Live View».

Наличие такого режима позволяет повысить удобство визирования, в том числе с помощью поворотного дисплея, и делает зеркальный фотоаппарат пригодным для видеосъёмки. Кроме того, становится доступным ещё одно достоинство электронного видоискателя: дистанционное визирование на экране компьютера[36]. Самые современные модели могут выводить изображение на экран внешнего смартфона, подсоединяемого по беспроводным протоколам[37]. Однако, при включении режима резко возрастает энергопотребление и разогрев матрицы, а также теряется большинство преимуществ оптического видоискателя перед электронным, прежде всего — фазовый автофокус. В первых устройствах, например, Canon EOS 5D Mark II, при включении режима автофокусировка была вообще невозможна, поскольку при поднятом зеркале свет не доходит до датчика. В последующих моделях этот недостаток устранён за счёт использования контрастного автофокуса, но его быстродействие значительно ниже, чем фазового, работающего в стандартных режимах съёмки. Кроме того, штатный TTL-экспонометр оказывается неработоспособным из-за того, что его сенсор перекрыт поднятым зеркалом. В этом случае включается альтернативный замер непосредственно матрицей. В настоящее время (2018 год) наличие технологии «Live View» считается обязательным не только в зеркальной аппаратуре потребительского класса, но и в профессиональной[38].

Сменная оптика

Возможность использовать сменную оптику без ограничений, доступность макросъёмки, а также специальных видов съёмок через оптические приборы, такие как микроскоп, телескоп или эндоскоп — основные факторы, способствующие популярности цифровых однообъективных зеркальных камер, пригодных для любых прикладных задач[34].

Поскольку конструкция большинства цифровых зеркальных фотоаппаратов основана на плёночных прототипах, используются те же объективы и стандарты их крепления, с учётом кроп-фактора из-за малого размера матрицы. Для компенсации условного «удлинения» фокусного расстояния, основные производители разработали новые стандарты, совместимые с предыдущими: например, Canon запустил новую линейку фотоаппаратов и объективов стандарта EF-S, основанную на плёночном Canon EF. Новый байонет без ограничений принимает оптику старого стандарта, но обратная совместимость ограничена, особенно для короткофокусной оптики из-за её укороченного заднего отрезка[39]. Аналогичным образом устроен стандарт Nikon DX, за исключением заднего отрезка, оставшегося неизменным[40]. Кроме того, новые объективы могут содержать усовершенствованные электронные схемы (электромагнитная прыгающая диафрагма, оптический стабилизатор и т. д.), которые не работоспособны со старыми камерами. Большая часть такой оптики имеет уменьшенное поле изображения объектива, рассчитанное на маленькую матрицу, и их установка на полнокадровую камеру приводит к виньетированию по углам кадра.

Производители

См. также

Примечания

  1. ↑ В «Olympus E-330» и некоторых других фотоаппаратах стандарта 4:3 кроме визирования по дисплею при поднятом зеркале возможно наблюдение изображения на экране в специальном режиме, когда видеосигнал формируется дополнительной матрицей, расположенной в оптическом тракте. При этом зеркальный видоискатель и фазовый автофокус остаются работоспособными

Источники

Литература

  • Фомин А. В. Глава I. Фотоаппараты // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 32—41. — 256 с. — 50 000 экз.
  • Н. Д. Панфилов, А. А. Фомин. II. Классификация фотоаппаратов // Краткий справочник фотолюбителя. — М.,: «Искусство», 1985. — С. 71—82. — 367 с.

Ссылки

wiki.sc

Цифровой зеркальный фотоаппарат — WiKi

Попытки создать портативные электронные устройства для записи неподвижных изображений начались сразу же после изобретения Уиллардом Бойлом и Джорджем Смитом прибора с зарядовой связью в 1969 году[1]. Однако, первые зеркальные видеофотоаппараты (англ. Still Video Camera), такие как «Sony Mavica» 1981 года, «Canon RC-701» и «Nikon Still Video Camera 1», появившиеся в 1986 году, не были цифровыми, поскольку основаны на аналоговой записи изображения в одном из стандартов цветного телевидения[2][3].

Первой зеркальной цифровой фотокамерой можно считать гибридное устройство «Electro-Optic Camera», спроектированное электронным подразделением «Kodak» по заказу правительства США с использованием профессионального фотоаппарата Canon New F-1[4][5]. Основой стала созданная «Кодаком» чёрно-белая ПЗС-матрица «M1», разрешение которой впервые превысило 1 мегапиксель[6]. Она размещалась в блоке, закрепляемом на съёмной задней крышке фотоаппарата, единственный экземпляр которого выпущен в 1988 году и эксплуатировался военными. В дальнейшем созданы ещё две подобные камеры «Tactic Camera» для оборонных задач[4].

Полученные гибриды оказались слишком громоздкими и неудобными, и следующим этапом через год стала разработка проектов «IRIS» для фотожурналистов и «Hawkeye II» для военных[7]. Оба прототипа создавались на основе зеркального фотоаппарата «Nikon F3», но чёрно-белый «IRIS» не нашёл спроса на рынке новостной фотографии. Часть военных приставок комплектовалась новой матрицей «М3» с фильтром Байера, ставшей первой цветной матрицей с разрешением более 1 мегапикселя[6]. Она же стала основой для первого коммерчески успешного и серийно выпускаемого цифрового гибрида «Kodak DCS 100», также собранного вокруг фотоаппарата «Nikon F3 HP». Гибрид, выпущенный в 1991 году, состоял из цифрового задника с ПЗС-матрицей, подключённого кабелем к внешнему блоку, носимому на плече[6]. Внешний блок DSU (англ. Digital Storage Unit) содержал 3,5-дюймовый жёсткий диск ёмкостью 200 мегабайт, на который записывались снимки, формируемые приставкой к фотоаппарату. При этом задник мог быть отстыкован и фотоаппарат вновь становился пригодным для съёмки на плёнку. Устройство стало первым, ориентированным на совместную работу с компьютером, а не видеомагнитофоном, как это было в большинстве предыдущих разработок других производителей[8].

Перечисленные гибриды создавались гражданским (англ. Professional Photography Division) и оборонным (англ. Federal Systems Division) подразделениями «Kodak» независимо от «Никона», выпустившего совместно с NASA цифровой «Nikon F4 ESC NASA» с задником, оснащённым чёрно-белой матрицей в 1 мегапиксель[6]. Дальнейшие разработки были сосредоточены в компаниях Fujifilm, Sony и гражданском секторе компании «Kodak», с 1994 до 1998 года выпустившей более компактные устройства серии DCS, стыкующиеся с фотоаппаратами «Nikon F801», «Nikon F90» и «Canon EOS-1N»[9]. Все эти разработки стали промежуточным этапом перед созданием полноценных цифровых зеркальных фотоаппаратов неразъёмной конструкции. К началу 2000-х годов Canon и Nikon создали профессиональные линейки фотоаппаратов «Canon EOS-1D» и «Nikon D1», основой при проектировании которых послужили предыдущие опыты с гибридными камерами. Возможность замены плёнки цифровым задником с матрицей осталась только в среднеформатных зеркальных фотоаппаратах, предназначенных для студийной съёмки.

Появление цифровых зеркальных фотоаппаратов потребительского уровня можно отнести к концу 2003 года, когда начались массовые продажи камеры «Canon EOS 300D», стоимость которой впервые оказалась ниже символической границы в 1000 долларов[10][11]. Все предыдущие образцы, стоившие первоначально в диапазоне от 5 до 20 тысяч долларов, можно отнести только к профессиональному сектору рынка. С началом продаж для массовой публики цифровые зеркальные фотоаппараты начали бурно развиваться, повышая разрешающую способность матриц, их размеры и скорость обработки данных. Постепенно качество цифровой фотографии оказалось сопоставимым с классической плёночной, а персональные компьютеры стали доступны массовому покупателю. С середины 2000-х годов цифровая аппаратура практически полностью вытеснила плёночные аналоги, прежде всего в сфере фотожурналистики, традиционно ориентированной на зеркальный видоискатель. В любительской фотографии с начала 2010-х годов зеркальный видоискатель начал вытесняться беззеркальными фотоаппаратами со сменной оптикой, а также камерафонами[12][13]. Так, если в 2012 году в мире продано более 16 миллионов цифровых зеркальных фотоаппаратов, к 2017-му эта цифра снизилась более, чем вдвое, составив 7,5 миллионов[14].

Главными достоинствами зеркальных фотоаппаратов по сравнению с другими типами цифровой аппаратуры считается возможность использования сменной оптики, дающей такое же изображение как на плёночных аналогах, и матрица относительно больших размеров, обеспечивающая высокое качество цифрового изображения[15]. Совершенствование электронных технологий визирования сводит к минимуму главное преимущество зеркальной схемы: наличие беспараллаксного оптического видоискателя, дающего изображение, идентичное получаемому в фокальной плоскости.

Фазовый автофокус

Главным преимуществом зеркальных фотоаппаратов, по сравнению с беззеркальными считается возможность использования фазового автофокуса. Это наиболее быстрая и точная технология из всех существующих, однако для её работы необходимо наличие оптического тракта, направляющего свет от объектива на отдельный датчик. Такой принцип легко осуществим в однообъективных зеркальных фотоаппаратах при помощи основного и вспомогательного зеркал, но сопряжён с большими сложностями в беззеркальных конструкциях, производящих автофокусировку непосредственно по изображению, формируемому матрицей[16]. При этом используется сравнение его контраста при разных положениях объектива. Для повышения скорости фокусировки беззеркальных фотоаппаратов некоторые производители интегрируют фазовые датчики непосредственно в светочувствительную матрицу, но быстродействие автофокуса зеркальных фотоаппаратов до сих пор остаётся непревзойдённым[17][18].

Использование варианта зеркальной схемы с неподвижным полупрозрачным зеркалом позволяет применять фазовый принцип автофокуса в режиме «Live View», в том числе при видеозаписи, но при этом необходимо тщательное поддержание чистоты дополнительной оптической поверхности, не защищённой, в отличие от матрицы, даже затвором от пыли и загрязнений[19]. Кроме того, наличие полупрозрачного зеркала снижает светосилу всей системы и уменьшает яркость изображения в видоискателе. По такой схеме построена линейка фотоаппаратов Sony Alpha SLT.

В 2015 году Sony предложила ряд технологий, позволяющих реализовать в беззеркальных аппаратах быстрый гибридный автофокус, использующий ряд специальных микролинз и выделенные пиксели по принципу, сходному с фазовым автофокусом[20][21].

Размер матрицы

Светочувствительные матрицы, устанавливаемые в цифровых зеркальных камерах, значительно превосходят по физическим размерам сенсоры компактных фотоаппаратов[22][23]. Большой кадр позволяет использовать элементарные фотодиоды увеличенных размеров при том же их количестве, определяющем разрешение. В результате возрастает качество изображения: снижаются шумы при тех же значениях светочувствительности, и расширяется динамический диапазон[24]. Матрица типичной цифровой зеркальной камеры потребительского класса имеет формат APS-C (22×15 мм), однако наблюдается тенденция увеличения сенсора до полнокадрового (Canon EOS 6D, Sony A99)[25].

Матрицы профессиональных фотокамер несколько больше — формата APS-H (серия Canon EOS-1D), но могут достигать размеров «классического» малоформатного кадра размером 24×36 мм (Canon EOS 5D Mark III, Canon EOS-1D X Mark II, Nikon D5) и даже превосходить его (Leica S2, Mamiya 645D или Hasselblad HxD-серий), что позволяет добиваться отличной цветопередачи и отношения сигнал/шум. Размер матриц компактных цифровых камер, как правило, не превышает 7,2×5,3 мм (формат 1/1,8″) и в большинстве своём составляет 4,5×3,4 мм (формат 1/3,2″), давая площадь в 56,5 раз меньше, чем малоформатный «полный» кадр (864 и 15,3 квадратных миллиметров соответственно)[26]. Приемлемый уровень шумов и качество изображения такие матрицы могут обеспечить только при минимальных значениях ISO и ярком освещении.

В то же время, небольшие матрицы позволяют конструировать более компактную и лёгкую оптику с большой светосилой. Так, кратность и светосила зум-объективов компактных камер обычно недостижимы для оптики, рассчитанной на малоформатную матрицу или плёночный кадр, а также связаны с многократным удорожанием. Телеобъективы, предназначенные для небольшого размера кадра, также гораздо компактнее и светосильнее крупноформатных аналогов. Это преимущество миниатюрных матриц используется в псевдозеркальных цифровых фотоаппаратах, обычно оснащаемых несъёмным компактным «суперзумом» большой кратности, перекрывающей значительную часть диапазона фокусных расстояний, используемых в повседневной практике съёмки[27]. Такие фотоаппараты, более дешёвые, чем зеркальные, занимают существенную часть рынка аппаратуры для фотолюбителей, вытесняя более сложные в обращении DSLR. Кроме того, несъёмная конструкция объектива исключает попадание пыли и загрязнений на поверхность матрицы, неизбежное в зеркальных фотоаппаратах со сменной оптикой.

Характер изображения

Несмотря на важность физических характеристик матриц большого размера, более существенным преимуществом зеркальной аппаратуры считается характер изображения, создаваемого объективами от малоформатных фотоаппаратов. Фотообъективы обладают относительно большими фокусными расстояниями по сравнению с оптикой видеокамер и компактных фотоаппаратов. В результате, при тех же углах поля зрения и относительных отверстиях, глубина резко изображаемого пространства получаемого изображения значительно меньше, чем в миниатюрных форматах, что предоставляет возможность использования традиционных в профессиональной фотографии приёмов, позволяющих подчеркнуть глубину пространства и отделить основной объект съёмки от фона.

Ещё одним важным обстоятельством считается принципиально более высокое качество оптического изображения, напрямую зависящее от физического размера кадра вследствие дифракционного ограничения любых оптических систем[24][28]. Другими словами, как и в плёночной фотографии, качество напрямую связано с размером кадра, независимо от разрешения светочувствительного элемента. По этим причинам максимальная детализация достижима в современной цифровой фотографии только при помощи цифровых задников среднего формата или зеркальных фотоаппаратов с полнокадровой матрицей.

В то же время, появление нового класса беззеркальных фотоаппаратов в конце 2000-х годов, разрушило монополию «зеркалок» на матрицу большого размера[29][30]. Некоторые типы таких фотоаппаратов оснащаются матрицами размера Микро 4:3 и APS-C, а вскоре после них появилась «Sony A7», с полнокадровой матрицей[16].

Оптический видоискатель

Принципиальным отличием цифровых зеркальных фотоаппаратов от остальных типов цифровых камер является зеркальный видоискатель, который считается наиболее совершенным из всех оптических и обладает такими преимуществами, как полное отсутствие параллакса, возможность визуальной оценки глубины резкости и точное совпадение границ кадра с полем зрения любых сменных объективов, в том числе зумов[31]. Кроме того, это единственный тип оптического визира, пригодный для съёмки через оптические приборы, макросъёмки и использования специальной оптики, в том числе шифт-объективов[32]. В отличие от дальномерных фотоаппаратов, точность ручной и автоматической фокусировки с помощью зеркального видоискателя не зависит от фокусного расстояния объектива[33][34]. По сравнению с компактными цифровыми фотоаппаратами зеркальные обеспечивают более высокое быстродействие и удобство управления изображением, видимым без электронного преобразования со всеми оптическими нюансами.

К недостаткам зеркального видоискателя можно отнести его громоздкость и сложность, особенно заметные в сравнении с новейшими беззеркальными камерами[30]. Кроме того, наличие подвижного зеркала затрудняет конструирование короткофокусной оптики из-за необходимости удлинения заднего отрезка. «Ретрофокусная» конструкция широкоугольных объективов для зеркальных камер считается менее совершенной, чем симметричная, используемая во всех остальных типах аппаратуры. Быстрое движение зеркала непосредственно перед съёмкой приводит к вибрациям, недопустимым в момент экспозиции[34]. Сложность фокусировочного тракта и наличие дополнительных оптических элементов высокой точности, таких как пентапризма и фокусировочный экран приводят к удорожанию всей конструкции[30]. Взаимное расположение элементов видоискателя и модуля автофокуса требует точной юстировки, от которой зависит корректность ручной и автоматической фокусировки. Ещё одним недостатком зеркального видоискателя является ограничение максимальной частоты серийной съёмки за счёт инерционности зеркала и его приводов[17].

В то же время, электронный видоискатель беззеркальных цифровых камер обладает теми же достоинствами, что и зеркальный, отображая будущий снимок на жидкокристаллическом дисплее. Традиционные недостатки такого видоискателя — перегрев фотоматрицы с ухудшением изображения, невысокое разрешение дисплея и его возможная засветка ярким освещением — к началу 2010-х годов преодолены за счёт многократно улучшившихся характеристик фотоматриц, TFT-экранов и их удешевления. А использование электронного видоискателя окулярного типа предотвращает засветку и приближает технологию съёмки к традиционной «зеркальной». Запаздывание электронного изображения, заметное на первых моделях компактной аппаратуры, с повышением быстродействия процессоров сведено практически к нулю[14]. В то же время, задержка срабатывания затвора современных беззеркальных фотоаппаратов сопоставима с зеркальными, у которых этот параметр также превышает показатели дальномерных и шкальных камер из-за наличия подвижного зеркала. Такое достоинство оптического видоискателя, как энергонезависимость, в цифровых устройствах второстепенно, однако значительно снижает энергопотребление, особенно в режиме ожидания.

Режим Live View

Использование электронного видоискателя в цифровых зеркальных фотоаппаратах классической конструкции невозможно из-за того, что светочувствительная матрица во время визирования закрыта затвором и зеркалом, обеспечивающим работу оптического визира. В январе 2006 года компания Olympus представила зеркальную камеру E-330, в которой впервые реализована возможность кадрирования по изображению, получаемому не с дополнительной матрицы, размещённой в оптическом тракте видоискателя, а с основной[35]. Для этого фотоаппарат переводится в режим, получивший торговое название «Live View». В этом режиме визирование осуществляется при поднятом зеркале и открытом затворе так же, как во всех других типах цифровой аппаратуры. Оптический видоискатель в этом случае не работает, поскольку закрыт поднятым зеркалом[* 1]. Непосредственно перед съёмкой затвор закрывается и затем производит одну или несколько экспозиций, в зависимости от установленного режима протяжки. Зеркало остаётся поднятым до тех пор, пока не выключен режим «Live View».

Наличие такого режима позволяет повысить удобство визирования, в том числе с помощью поворотного дисплея, и делает зеркальный фотоаппарат пригодным для видеосъёмки. Кроме того, становится доступным ещё одно достоинство электронного видоискателя: дистанционное визирование на экране компьютера[36]. Самые современные модели могут выводить изображение на экран внешнего смартфона, подсоединяемого по беспроводным протоколам[37]. Однако, при включении режима резко возрастает энергопотребление и разогрев матрицы, а также теряется большинство преимуществ оптического видоискателя перед электронным, прежде всего — фазовый автофокус. В первых устройствах, например, Canon EOS 5D Mark II, при включении режима автофокусировка была вообще невозможна, поскольку при поднятом зеркале свет не доходит до датчика. В последующих моделях этот недостаток устранён за счёт использования контрастного автофокуса, но его быстродействие значительно ниже, чем фазового, работающего в стандартных режимах съёмки. Кроме того, штатный TTL-экспонометр оказывается неработоспособным из-за того, что его сенсор перекрыт поднятым зеркалом. В этом случае включается альтернативный замер непосредственно матрицей. В настоящее время (2018 год) наличие технологии «Live View» считается обязательным не только в зеркальной аппаратуре потребительского класса, но и в профессиональной[38].

Сменная оптика

Возможность использовать сменную оптику без ограничений, доступность макросъёмки, а также специальных видов съёмок через оптические приборы, такие как микроскоп, телескоп или эндоскоп — основные факторы, способствующие популярности цифровых однообъективных зеркальных камер, пригодных для любых прикладных задач[34].

Поскольку конструкция большинства цифровых зеркальных фотоаппаратов основана на плёночных прототипах, используются те же объективы и стандарты их крепления, с учётом кроп-фактора из-за малого размера матрицы. Для компенсации условного «удлинения» фокусного расстояния, основные производители разработали новые стандарты, совместимые с предыдущими: например, Canon запустил новую линейку фотоаппаратов и объективов стандарта EF-S, основанную на плёночном Canon EF. Новый байонет без ограничений принимает оптику старого стандарта, но обратная совместимость ограничена, особенно для короткофокусной оптики из-за её укороченного заднего отрезка[39]. Аналогичным образом устроен стандарт Nikon DX, за исключением заднего отрезка, оставшегося неизменным[40]. Кроме того, новые объективы могут содержать усовершенствованные электронные схемы (электромагнитная прыгающая диафрагма, оптический стабилизатор и т. д.), которые не работоспособны со старыми камерами. Большая часть такой оптики имеет уменьшенное поле изображения объектива, рассчитанное на маленькую матрицу, и их установка на полнокадровую камеру приводит к виньетированию по углам кадра.

ru-wiki.org

Цифровой зеркальный фотоаппарат Википедия

Цифровой зеркальный фотоаппарат, DSLR (англ. Digital single-lens reflex camera) — цифровой фотоаппарат, построенный на основе принципа однообъективной зеркальной камеры, использовавшегося в плёночной фотографии. Понятие цифрового зеркального фотоаппарата подразумевает однообъективную схему, поскольку двухобъективная в цифровой фотографии широкого применения не нашла.

Историческая справка

Попытки создать портативные электронные устройства для записи неподвижных изображений начались сразу же после изобретения Уиллардом Бойлом и Джорджем Смитом прибора с зарядовой связью в 1969 году[1]. Однако, первые зеркальные видеофотоаппараты (англ. Still Video Camera), такие как «Sony Mavica» 1981 года, «Canon RC-701» и «Nikon Still Video Camera 1», появившиеся в 1986 году, не были цифровыми, поскольку основаны на аналоговой записи изображения в одном из стандартов цветного телевидения[2][3].

Первой зеркальной цифровой фотокамерой можно считать гибридное устройство «Electro-Optic Camera», спроектированное электронным подразделением «Kodak» по заказу правительства США с использованием профессионального фотоаппарата Canon New F-1[4][5]. Основой стала созданная «Кодаком» чёрно-белая ПЗС-матрица «M1», разрешение которой впервые превысило 1 мегапиксель[6]. Она размещалась в блоке, закрепляемом на съёмной задней крышке фотоаппарата, единственный экземпляр которого выпущен в 1988 году и эксплуатировался военными. В дальнейшем созданы ещё две подобные камеры «Tactic Camera» для оборонных задач[4].

Полученные гибриды оказались слишком громоздкими и неудобными, и следующим этапом через год стала разработка проектов «IRIS» для фотожурналистов и «Hawkeye II» для военных[7]. Оба прототипа создавались на основе зеркального фотоаппарата «Nikon F3», но чёрно-белый «IRIS» не нашёл спроса на рынке новостной фотографии. Часть военных приставок комплектовалась новой матрицей «М3» с фильтром Байера, ставшей первой цветной матрицей с разрешением более 1 мегапикселя[6]. Она же стала основой для первого коммерчески успешного и серийно выпускаемого цифрового гибрида «Kodak DCS 100», также собранного вокруг фотоаппарата «Nikon F3 HP». Гибрид, выпущенный в 1991 году, состоял из цифрового задника с ПЗС-матрицей, подключённого кабелем к внешнему блоку, носимому на плече[6]. Внешний блок DSU (англ. Digital Storage Unit) содержал 3,5-дюймовый жёсткий диск ёмкостью 200 мегабайт, на который записывались снимки, формируемые приставкой к фотоаппарату. При этом задник мог быть отстыкован и фотоаппарат вновь становился пригодным для съёмки на плёнку. Устройство стало первым, ориентированным на совместную работу с компьютером, а не видеомагнитофоном, как это было в большинстве предыдущих разработок других производителей[8].

Перечисленные гибриды создавались гражданским (англ. Professional Photography Division) и оборонным (англ. Federal Systems Division) подразделениями «Kodak» независимо от «Никона», выпустившего совместно с NASA цифровой «Nikon F4 ESC NASA» с задником, оснащённым чёрно-белой матрицей в 1 мегапиксель[6]. Дальнейшие разработки были сосредоточены в компаниях Fujifilm, Sony и гражданском секторе компании «Kodak», с 1994 до 1998 года выпустившей более компактные устройства серии DCS, стыкующиеся с фотоаппаратами «Nikon F801», «Nikon F90» и «Canon EOS-1N»[9]. Все эти разработки стали промежуточным этапом перед созданием полноценных цифровых зеркальных фотоаппаратов неразъёмной конструкции. К началу 2000-х годов Canon и Nikon создали профессиональные линейки фотоаппаратов «Canon EOS-1D» и «Nikon D1», основой при проектировании которых послужили предыдущие опыты с гибридными камерами. Возможность замены плёнки цифровым задником с матрицей осталась только в среднеформатных зеркальных фотоаппаратах, предназначенных для студийной съёмки.

Появление цифровых зеркальных фотоаппаратов потребительского уровня можно отнести к концу 2003 года, когда начались массовые продажи камеры «Canon EOS 300D», стоимость которой впервые оказалась ниже символической границы в 1000 долларов[10][11]. Все предыдущие образцы, стоившие первоначально в диапазоне от 5 до 20 тысяч долларов, можно отнести только к профессиональному сектору рынка. С началом продаж для массовой публики цифровые зеркальные фотоаппараты начали бурно развиваться, повышая разрешающую способность матриц, их размеры и скорость обработки данных. Постепенно качество цифровой фотографии оказалось сопоставимым с классической плёночной, а персональные компьютеры стали доступны массовому покупателю. С середины 2000-х годов цифровая аппаратура практически полностью вытеснила плёночные аналоги, прежде всего в сфере фотожурналистики, традиционно ориентированной на зеркальный видоискатель. В любительской фотографии с начала 2010-х годов зеркальный видоискатель начал вытесняться беззеркальными фотоаппаратами со сменной оптикой, а также камерафонами[12][13]. Так, если в 2012 году в мире продано более 16 миллионов цифровых зеркальных фотоаппаратов, к 2017-му эта цифра снизилась более, чем вдвое, составив 7,5 миллионов[14].

Особенности конструкции

Главными достоинствами зеркальных фотоаппаратов по сравнению с другими типами цифровой аппаратуры считается возможность использования сменной оптики, дающей такое же изображение как на плёночных аналогах, и матрица относительно больших размеров, обеспечивающая высокое качество цифрового изображения[15]. Совершенствование электронных технологий визирования сводит к минимуму главное преимущество зеркальной схемы: наличие беспараллаксного оптического видоискателя, дающего изображение, идентичное получаемому в фокальной плоскости.

Фазовый автофокус

Главным преимуществом зеркальных фотоаппаратов, по сравнению с беззеркальными считается возможность использования фазового автофокуса. Это наиболее быстрая и точная технология из всех существующих, однако для её работы необходимо наличие оптического тракта, направляющего свет от объектива на отдельный датчик. Такой принцип легко осуществим в однообъективных зеркальных фотоаппаратах при помощи основного и вспомогательного зеркал, но сопряжён с большими сложностями в беззеркальных конструкциях, производящих автофокусировку непосредственно по изображению, формируемому матрицей[16]. При этом используется сравнение его контраста при разных положениях объектива. Для повышения скорости фокусировки беззеркальных фотоаппаратов некоторые производители интегрируют фазовые датчики непосредственно в светочувствительную матрицу, но быстродействие автофокуса зеркальных фотоаппаратов до сих пор остаётся непревзойдённым[17][18].

Использование варианта зеркальной схемы с неподвижным полупрозрачным зеркалом позволяет применять фазовый принцип автофокуса в режиме «Live View», в том числе при видеозаписи, но при этом необходимо тщательное поддержание чистоты дополнительной оптической поверхности, не защищённой, в отличие от матрицы, даже затвором от пыли и загрязнений[19]. Кроме того, наличие полупрозрачного зеркала снижает светосилу всей системы и уменьшает яркость изображения в видоискателе. По такой схеме построена линейка фотоаппаратов Sony Alpha SLT.

В 2015 году Sony предложила ряд технологий, позволяющих реализовать в беззеркальных аппаратах быстрый гибридный автофокус, использующий ряд специальных микролинз и выделенные пиксели по принципу, сходному с фазовым автофокусом[20][21].

Размер матрицы

Светочувствительные матрицы, устанавливаемые в цифровых зеркальных камерах, значительно превосходят по физическим размерам сенсоры компактных фотоаппаратов[22][23]. Большой кадр позволяет использовать элементарные фотодиоды увеличенных размеров при том же их количестве, определяющем разрешение. В результате возрастает качество изображения: снижаются шумы при тех же значениях светочувствительности, и расширяется динамический диапазон[24]. Матрица типичной цифровой зеркальной камеры потребительского класса имеет формат APS-C (22×15 мм), однако наблюдается тенденция увеличения сенсора до полнокадрового (Canon EOS 6D, Sony A99)[25].

Матрицы профессиональных фотокамер несколько больше — формата APS-H (серия Canon EOS-1D), но могут достигать размеров «классического» малоформатного кадра размером 24×36 мм (Canon EOS 5D Mark III, Canon EOS-1D X Mark II, Nikon D5) и даже превосходить его (Leica S2, Mamiya 645D или Hasselblad HxD-серий), что позволяет добиваться отличной цветопередачи и отношения сигнал/шум. Размер матриц компактных цифровых камер, как правило, не превышает 7,2×5,3 мм (формат 1/1,8″) и в большинстве своём составляет 4,5×3,4 мм (формат 1/3,2″), давая площадь в 56,5 раз меньше, чем малоформатный «полный» кадр (864 и 15,3 квадратных миллиметров соответственно)[26]. Приемлемый уровень шумов и качество изображения такие матрицы могут обеспечить только при минимальных значениях ISO и ярком освещении.

В то же время, небольшие матрицы позволяют конструировать более компактную и лёгкую оптику с большой светосилой. Так, кратность и светосила зум-объективов компактных камер обычно недостижимы для оптики, рассчитанной на малоформатную матрицу или плёночный кадр, а также связаны с многократным удорожанием. Телеобъективы, предназначенные для небольшого размера кадра, также гораздо компактнее и светосильнее крупноформатных аналогов. Это преимущество миниатюрных матриц используется в псевдозеркальных цифровых фотоаппаратах, обычно оснащаемых несъёмным компактным «суперзумом» большой кратности, перекрывающей значительную часть диапазона фокусных расстояний, используемых в повседневной практике съёмки[27]. Такие фотоаппараты, более дешёвые, чем зеркальные, занимают существенную часть рынка аппаратуры для фотолюбителей, вытесняя более сложные в обращении DSLR. Кроме того, несъёмная конструкция объектива исключает попадание пыли и загрязнений на поверхность матрицы, неизбежное в зеркальных фотоаппаратах со сменной оптикой.

Характер изображения

Несмотря на важность физических характеристик матриц большого размера, более существенным преимуществом зеркальной аппаратуры считается характер изображения, создаваемого объективами от малоформатных фотоаппаратов. Фотообъективы обладают относительно большими фокусными расстояниями по сравнению с оптикой видеокамер и компактных фотоаппаратов. В результате, при тех же углах поля зрения и относительных отверстиях, глубина резко изображаемого пространства получаемого изображения значительно меньше, чем в миниатюрных форматах, что предоставляет возможность использования традиционных в профессиональной фотографии приёмов, позволяющих подчеркнуть глубину пространства и отделить основной объект съёмки от фона.

Ещё одним важным обстоятельством считается принципиально более высокое качество оптического изображения, напрямую зависящее от физического размера кадра вследствие дифракционного ограничения любых оптических систем[24][28]. Другими словами, как и в плёночной фотографии, качество напрямую связано с размером кадра, независимо от разрешения светочувствительного элемента. По этим причинам максимальная детализация достижима в современной цифровой фотографии только при помощи цифровых задников среднего формата или зеркальных фотоаппаратов с полнокадровой матрицей.

В то же время, появление нового класса беззеркальных фотоаппаратов в конце 2000-х годов, разрушило монополию «зеркалок» на матрицу большого размера[29][30]. Некоторые типы таких фотоаппаратов оснащаются матрицами размера Микро 4:3 и APS-C, а вскоре после них появилась «Sony A7», с полнокадровой матрицей[16].

Оптический видоискатель

Принципиальным отличием цифровых зеркальных фотоаппаратов от остальных типов цифровых камер является зеркальный видоискатель, который считается наиболее совершенным из всех оптических и обладает такими преимуществами, как полное отсутствие параллакса, возможность визуальной оценки глубины резкости и точное совпадение границ кадра с полем зрения любых сменных объективов, в том числе зумов[31]. Кроме того, это единственный тип оптического визира, пригодный для съёмки через оптические приборы, макросъёмки и использования специальной оптики, в том числе шифт-объективов[32]. В отличие от дальномерных фотоаппаратов, точность ручной и автоматической фокусировки с помощью зеркального видоискателя не зависит от фокусного расстояния объектива[33][34]. По сравнению с компактными цифровыми фотоаппаратами зеркальные обеспечивают более высокое быстродействие и удобство управления изображением, видимым без электронного преобразования со всеми оптическими нюансами.

К недостаткам зеркального видоискателя можно отнести его громоздкость и сложность, особенно заметные в сравнении с новейшими беззеркальными камерами[30]. Кроме того, наличие подвижного зеркала затрудняет конструирование короткофокусной оптики из-за необходимости удлинения заднего отрезка. «Ретрофокусная» конструкция широкоугольных объективов для зеркальных камер считается менее совершенной, чем симметричная, используемая во всех остальных типах аппаратуры. Быстрое движение зеркала непосредственно перед съёмкой приводит к вибрациям, недопустимым в момент экспозиции[34]. Сложность фокусировочного тракта и наличие дополнительных оптических элементов высокой точности, таких как пентапризма и фокусировочный экран приводят к удорожанию всей конструкции[30]. Взаимное расположение элементов видоискателя и модуля автофокуса требует точной юстировки, от которой зависит корректность ручной и автоматической фокусировки. Ещё одним недостатком зеркального видоискателя является ограничение максимальной частоты серийной съёмки за счёт инерционности зеркала и его приводов[17].

В то же время, электронный видоискатель беззеркальных цифровых камер обладает теми же достоинствами, что и зеркальный, отображая будущий снимок на жидкокристаллическом дисплее. Традиционные недостатки такого видоискателя — перегрев фотоматрицы с ухудшением изображения, невысокое разрешение дисплея и его возможная засветка ярким освещением — к началу 2010-х годов преодолены за счёт многократно улучшившихся характеристик фотоматриц, TFT-экранов и их удешевления. А использование электронного видоискателя окулярного типа предотвращает засветку и приближает технологию съёмки к традиционной «зеркальной». Запаздывание электронного изображения, заметное на первых моделях компактной аппаратуры, с повышением быстродействия процессоров сведено практически к нулю[14]. В то же время, задержка срабатывания затвора современных беззеркальных фотоаппаратов сопоставима с зеркальными, у которых этот параметр также превышает показатели дальномерных и шкальных камер из-за наличия подвижного зеркала. Такое достоинство оптического видоискателя, как энергонезависимость, в цифровых устройствах второстепенно, однако значительно снижает энергопотребление, особенно в режиме ожидания.

Режим Live View

Использование электронного видоискателя в цифровых зеркальных фотоаппаратах классической конструкции невозможно из-за того, что светочувствительная матрица во время визирования закрыта затвором и зеркалом, обеспечивающим работу оптического визира. В январе 2006 года компания Olympus представила зеркальную камеру E-330, в которой впервые реализована возможность кадрирования по изображению, получаемому не с дополнительной матрицы, размещённой в оптическом тракте видоискателя, а с основной[35]. Для этого фотоаппарат переводится в режим, получивший торговое название «Live View». В этом режиме визирование осуществляется при поднятом зеркале и открытом затворе так же, как во всех других типах цифровой аппаратуры. Оптический видоискатель в этом случае не работает, поскольку закрыт поднятым зеркалом[* 1]. Непосредственно перед съёмкой затвор закрывается и затем производит одну или несколько экспозиций, в зависимости от установленного режима протяжки. Зеркало остаётся поднятым до тех пор, пока не выключен режим «Live View».

Наличие такого режима позволяет повысить удобство визирования, в том числе с помощью поворотного дисплея, и делает зеркальный фотоаппарат пригодным для видеосъёмки. Кроме того, становится доступным ещё одно достоинство электронного видоискателя: дистанционное визирование на экране компьютера[36]. Самые современные модели могут выводить изображение на экран внешнего смартфона, подсоединяемого по беспроводным протоколам[37]. Однако, при включении режима резко возрастает энергопотребление и разогрев матрицы, а также теряется большинство преимуществ оптического видоискателя перед электронным, прежде всего — фазовый автофокус. В первых устройствах, например, Canon EOS 5D Mark II, при включении режима автофокусировка была вообще невозможна, поскольку при поднятом зеркале свет не доходит до датчика. В последующих моделях этот недостаток устранён за счёт использования контрастного автофокуса, но его быстродействие значительно ниже, чем фазового, работающего в стандартных режимах съёмки. Кроме того, штатный TTL-экспонометр оказывается неработоспособным из-за того, что его сенсор перекрыт поднятым зеркалом. В этом случае включается альтернативный замер непосредственно матрицей. В настоящее время (2018 год) наличие технологии «Live View» считается обязательным не только в зеркальной аппаратуре потребительского класса, но и в профессиональной[38].

Сменная оптика

Возможность использовать сменную оптику без ограничений, доступность макросъёмки, а также специальных видов съёмок через оптические приборы, такие как микроскоп, телескоп или эндоскоп — основные факторы, способствующие популярности цифровых однообъективных зеркальных камер, пригодных для любых прикладных задач[34].

Поскольку конструкция большинства цифровых зеркальных фотоаппаратов основана на плёночных прототипах, используются те же объективы и стандарты их крепления, с учётом кроп-фактора из-за малого размера матрицы. Для компенсации условного «удлинения» фокусного расстояния, основные производители разработали новые стандарты, совместимые с предыдущими: например, Canon запустил новую линейку фотоаппаратов и объективов стандарта EF-S, основанную на плёночном Canon EF. Новый байонет без ограничений принимает оптику старого стандарта, но обратная совместимость ограничена, особенно для короткофокусной оптики из-за её укороченного заднего отрезка[39]. Аналогичным образом устроен стандарт Nikon DX, за исключением заднего отрезка, оставшегося неизменным[40]. Кроме того, новые объективы могут содержать усовершенствованные электронные схемы (электромагнитная прыгающая диафрагма, оптический стабилизатор и т. д.), которые не работоспособны со старыми камерами. Большая часть такой оптики имеет уменьшенное поле изображения объектива, рассчитанное на маленькую матрицу, и их установка на полнокадровую камеру приводит к виньетированию по углам кадра.

Производители

См. также

Примечания

  1. ↑ В «Olympus E-330» и некоторых других фотоаппаратах стандарта 4:3 кроме визирования по дисплею при поднятом зеркале возможно наблюдение изображения на экране в специальном режиме, когда видеосигнал формируется дополнительной матрицей, расположенной в оптическом тракте. При этом зеркальный видоискатель и фазовый автофокус остаются работоспособными

Источники

Литература

  • Фомин А. В. Глава I. Фотоаппараты // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 32—41. — 256 с. — 50 000 экз.
  • Н. Д. Панфилов, А. А. Фомин. II. Классификация фотоаппаратов // Краткий справочник фотолюбителя. — М.,: «Искусство», 1985. — С. 71—82. — 367 с.

Ссылки

wikiredia.ru

Цифровой зеркальный фотоаппарат Википедия

Цифровой зеркальный фотоаппарат, DSLR (англ. Digital single-lens reflex camera) — цифровой фотоаппарат, построенный на основе принципа однообъективной зеркальной камеры, использовавшегося в плёночной фотографии. Понятие цифрового зеркального фотоаппарата подразумевает однообъективную схему, поскольку двухобъективная в цифровой фотографии широкого применения не нашла.

Историческая справка[ | ]

Попытки создать портативные электронные устройства для записи неподвижных изображений начались сразу же после изобретения Уиллардом Бойлом и Джорджем Смитом прибора с зарядовой связью в 1969 году[1]. Однако, первые зеркальные видеофотоаппараты (англ. Still Video Camera), такие как «Sony Mavica» 1981 года, «Canon RC-701» и «Nikon Still Video Camera 1», появившиеся в 1986 году, не были цифровыми, поскольку основаны на аналоговой записи изображения в одном из стандартов цветного телевидения[2][3].

Первой зеркальной цифровой фотокамерой можно считать гибридное устройство «Electro-Optic Camera», спроектированное электронным подразделением «Kodak» по заказу правительства США с использованием профессионального фотоаппарата Canon New F-1[4][5]. Основой стала созданная «аком» чёрно-белая ПЗС-матрица «M1», разрешение которой впервые превысило 1 мегапиксель[6]. Она размещалась в блоке, закрепляемом на съёмной задней крышке фотоаппарата, единственный экземпляр которого выпущен в 1988 году и эксплуатировался военными. В дальнейшем созданы ещё две подобные камеры «Tactic Camera» для оборонных задач[4].

Полученные гибриды оказались слишком громоздкими и неудобными, и следующим этапом через год стала разработка проектов «IRIS» для фотожурналистов и «Hawkeye II» для военных[7]. Оба про

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *