Хроматографические методы анализа: качественный и количественный анализ, история возникновения
Хроматография применяется для анализа сложных многокомпонентных смесей. Хроматографические методы определяют качественный и количественный состав органических веществ, включая летучие углеводороды и биологические жидкости. Фармацевтика, медицина, нефтеперерабатывающий комплекс, химическое производство и другие промышленные отрасли используют хроматографы для контроля качества сырья и готовой продукции, а также обеспечивают с их помощью соблюдение норм экологической безопасности.
Широкое распространение хроматографических методов анализа обусловлено их разнообразием и спецификой, которые раскрываются в данной статье:
Хроматографические методы анализа основаны на цикличных актах сорбции‑десорбции, происходящих между подвижной фазой (элюентом) с растворенной пробой и неподвижным сорбентом. Компоненты сложных смесей имеют различную сорбируемость, и проходя вдоль неподвижной фазы, поглощаются с неодинаковой скоростью и в разном количестве.
В традиционном методе в качестве неподвижной фазы используется материал с развитой поверхностью, а элюентом выступает поток инертного газа или жидкости. Фильтрация элюента через слой сорбента запускает многократное повторение сорбции и десорбции, что и отличает хроматографические методы анализа от других аналитических методик и обуславливает их эффективность.
Хроматографические методы анализа устанавливают качественный и количественный состав вещества. При качественных испытаниях пробу идентифицируют по ее хроматограмме, сравнивая полученные параметры с эталонными значениями, хранящимися в библиотеке данных.
Количественный метод анализа строится на измерении пиков, формирующихся в зависимости от концентрации примесей. Лаборант изучает хроматограмму одним из следующих методов:
Методы постоянно дорабатываются и совершенствуются, что позволяет получать более точные данные при анализе сложных смесей и нивелировать шумы на хроматограммах.
Впервые хроматография была описана русским ученым Михаилом Цветом, изучавшим строение хлорофилла. Ботаник предположил, что зеленый пигмент состоит из нескольких отдельных компонентов и нуждался в методе, который позволил бы разделить вещество на составляющие. Для этого он пропустил экстракт хлорофилла через стеклянную колонку, заполненную толченым мелом. Промыв сорбент эфиром, ученый получил несколько зон разного цвета, что позволило подтвердить многокомпонентный состав пробы. Разработанный метод был назван хроматографией.
Цвет описывал принцип хроматографии следующим образом: вещество в подвижной фазе постоянно реагирует с новыми участками адсорбента и частично впитывается, но при этом адсорбированные компоненты «вымываются» свежими порциями поступающего элюента. То есть, ученый открыл только один метод взаимодействия разделяемых компонентов: молекулярную адсорбцию.
Из‑за этого ботаник ошибочно предположил, что основным условием для осуществления хроматографического анализа является разница в адсорбируемости отдельных компонентов. Однако в современной хроматографии помимо молекулярной адсорбции для изучения сложных смесей используются и другие физико‑химические явления. В результате появилось множество хроматографических методов, и для их разграничения была разработана общепринятая классификация.
Хроматографические методы разделяются на несколько групп в зависимости от сравниваемых параметров. По агрегатному состоянию фаз хроматографические методы анализа делятся на:
Вторая классификация касается конструкции хроматографического оборудования. В большинстве методов применяется колоночный хроматограф: адсорбция осуществляется в колонках, заполненных неподвижной фазой. Но иногда используется плоскостная хроматография, в которой используется тонкий срез сорбента или специальная бумага. Также в последнее время получили распространение капиллярный хроматографический метод, при котором разделение происходит в пленке жидкости, и хроматография в полях, требующая для проведения анализа создания дополнительных магнитных, центробежных или иных сил.
Хроматографические методы анализа отличаются особенностями взаимодействия элюента и адсорбента. По механизмам разделения хроматография делится на:
- адсорбционную — основывается на разнице в адсорбируемости компонентов пробы;
- распределительную — протекает за счет различной растворимости веществ в фазах;
- ионообменную — осуществляется благодаря достижению констант ионообменного равновесия;
- проникающую — строится на разнице в формах и размерах молекул;
- осадочную — происходит благодаря осаждению нерастворимых соединений;
- адсорбционно‑комплексообразовательную — выполняется за счет образования на поверхности неподвижной фазы координационных соединений разной прочности.
Следующая классификация разделяет хроматографические метода анализа на три группы по способам перемещения поглощаемых компонентов вдоль адсорбционного слоя. Выделяют проявительный (или элюентный), фронтальный и вытеснительный методы. Рассмотрим их подробнее.
Методы перемещения пробы в неподвижной фазе
К наиболее простым хроматографическим методам анализа относится фронтальный, при котором роль элюента сведена к минимуму. Предположим, что проба представляет собой растворитель Solv, в котором содержатся два компонента: A и B. Анализируемое вещество непрерывным потоком пропускается через сорбционную колонку. После прохождения через хроматографическое оборудование, измеряется концентрация A и B в выходном растворе и учитывается изначальный объем Solv. На основании полученных данных строится график зависимости, который и является выходной кривой (хроматограммой).
Из‑за поглощения неподвижной фазой компонентов A и B, из колонки сначала будет поступать растворитель, затем вещество с меньшим коэффициентом сорбции (допустим, A), и только потом B. В результате спустя некоторое время из хроматографического оборудования будет поступать раствор с неизменным составом (одинаковой пропорцией Solv, A и B). Данный хроматографический метод анализа применяется не только для изучения сложных веществ, но и для их очистки от примесей, при условии, что они поглощаются лучше, чем основные элементы реагента.
В лабораторных испытаниях чаще всего используется проявительный или элюентный хроматографический метод. Специалист добавляет в колонку пробу реагента Solv c растворенными в нем компонентами A и B, после чего под постоянным давлением подает подвижную фазу. Под воздействием физико‑механических сил происходит разделение состава. Вещество с лучшей сорбируемостью займет верхнюю часть колонки, с меньшей — нижнюю. На выходе из оборудования сначала появится компонент A, затем чистый Solv, потом — элемент B, что и отразится в хроматограмме. Количественный анализ проводится измерением высоты и площади пиков: чем они больше, тем выше концентрация изучаемого вещества в составе.
Главное преимущество элюентного хроматографического метода заключается в возможности разделения сложных многокомпонентных реактивов. Однако при изучении хроматограммы необходимо учитывать снижение концентрации выходящих растворов из‑за разбавления подвижной фазой.
Третий метод — вытеснительный. Он предполагает использование вытеснителя (препарата D), который постоянно воздействует на раствор Solv, введенный в хроматографическую колонку. Коэффициент сорбции D должен быть выше, чем у любых компонентов анализируемой пробы. Благодаря этому препарат постепенно вытесняет вещество с худшей сорбируемостью, что и фиксируется при выходе смеси из колонки. Вытеснительный метод не требует применения газа‑носителя, в результате чего сокращаются издержки на проведение исследований. Однако стоит помнить, что анализ полученных данных затрудняется из‑за наложения зон разных веществ друг на друга, поскольку они не разделяются зоной растворителя.
Метод газожидкостной хроматографии
В аналитической химии широко используется газожидкостный хроматографический метод. Благодаря разнообразию применяемых жидких неподвижных фаз, можно создать оптимальные условия для идентификации практически любого вещества, содержащегося в исследуемой пробе в незначительной концентрации. Это обуславливает универсальность метода. Для этого необходимо правильно настроить хроматографическое оборудование и подобрать неподвижную фазу, отвечающую следующим параметрам:
- высокая способность к растворению элементов, содержащихся в реактиве — в противном случае проба быстро выходит из колонки и не дает достаточный материал для проведения анализа;
- низкая летучесть — во время исследования фаза не должна испаряться, поскольку это осложнит чтение хроматографического графика;
- химическая инертность — адсорбент не должен вступать в реакции с компонентами пробы или газом‑носителем;
- минимальная вязкость — в противном случае замедлится диффузия.
Также для реализации метода важна максимальная разделительная способность компонентов конкретной пробы.
Помимо выбора жидкой среды, в которой будет происходить разделение смеси на отдельные составляющие, во время подготовки хроматографического анализа необходимо подобрать носитель неподвижной фазы. В качестве носителя используется твердый и прочный материал, на котором жидкость образует тонкую однородную пленку. Чаще всего применяется силанизированный хромосорбат, фторуглеродные полимеры и гранулы из высококачественного стекла. Данные носители отличаются следующими преимуществами:
- легко и равномерно смачиваются неподвижной фазой;
- практически не впитывают жидкость, то есть не препятствуют нормальному протеканию реакции между жидкой и газообразной средами;
- не реагируют на повышение температуры в рабочей колонке.
Хроматографические методы анализа, построенные по газожидкостному принципу, относятся к наиболее современным, и применяются в случае необходимости разделения веществ, относящихся к одному классу.
Их активно используют в химической и нефтегазовой промышленности для контроля над качеством получаемой продукции. Среди ключевых преимуществ газожидкостного метода анализа можно выделить:- экспрессность;
- максимальная точность;
- полная автоматизация;
- небольшие затраты на подготовку пробы и проведение исследования.
Для использования метода требуется подобрать не только жидкую среду и ее носитель, но и решить вопрос с непрерывной подачей элюента. Для минимизации расходов к хроматографу подключается генератор газа (например, водорода), который продуцирует нужное количество вещества и отвечает за его равномерную подачу в оборудование.
Жидкостно‑жидкостный хроматографический метод
По технологии выполнения жидкостно‑жидкостный хроматографический метод анализа похож на газожидкостную хроматографию. На твердый носитель наносится жидкая среда, выступающая в роли неподвижной фазы. Для подготовки пробы используется не инертный газ, а раствор.
Изучаемый реагент вместе с потоком жидкого растворителя движется через сорбент, на поверхности которого происходит разделение компонентов. Чаще всего неподвижной фазой заполняют колонку хроматографа, но для некоторых исследований прибегают к методу тонкослойной хроматографии, при котором адсорбентом смачивают специальную бумагу.
Разделение осуществляется за счет распределения веществ между несмешивающимися растворами. То есть, концентрация одного и того же вещества в подвижной и неподвижной фазах будет различаться и зависеть от коэффициента распределения. Значения коэффициента устанавливаются эмпирически для каждого компонента, в результате чего жидкостно‑жидкостные хроматографические методы анализа позволяют с высокой точностью идентифицировать отдельные элементы в сложном составе.
Для успешной реализации метода необходимо правильно выбрать несмешивающиеся фазы. Обычно они подбираются исходя из опыта прошлых анализов. Чаще всего применяются так называемые «тройные системы», в которые включены два несмешивающихся друг с другом растворителя и третья жидкость, растворимая в обеих фазах.
Например, это может быть система из несмешивающихся гептанов и воды, в которую вводится хорошо растворимый в обеих средах этанол.При выборе составов для подвижной и неподвижной фаз, следует учитывать, что их нерастворимость друг в друге относительна, и при проведении исследования вещества будут вступать во взаимодействие (пусть и в незначительном объеме), что сказывается на значениях, которые показывают хроматографические методы анализа. Для минимизации погрешности используется одна из двух технологий: предварительное насыщение подвижной фазы неподвижной или химическое закрепление жидкости на сорбенте.
Эффективность проведенного хроматографического анализа зависит также от выбора носителя для неподвижной фазы. Требования к нему следующие:
- развитая поверхность;
- химическая инертность;
- высокая способность к удержанию жидкости;
- устойчивость к используемым растворителям.
Чаще всего в жидкостно‑жидкостных хроматографических методах исследования в качестве носителя выбирается целлюлоза, фторопласт, силикатные гели или полимеры.
Метод распределительной бумажной хроматографии
Помимо вышеописанных носителей, заполняющих колонки, в распределительных хроматографических методах анализа может использоваться специальная бумага, на которой происходит разделение исследуемых компонентов. Данный метод редко применяется в промышленных масштабах (по сравнению с колоночной хроматографией), но достаточно часто используется в аналитической химии.
Технология проведения бумажного хроматографического анализа предполагает вычисление коэффициента Rf, представляющего собой отношение смещения зоны компонента к смещению фронта раствора. В теории коэффициент зависит только от исследуемого вещества, растворителя и параметров бумаги. Однако в действительности при реализации метода на коэффициент также влияют компоненты, присутствующие в пробе в микроконцентрации, и используемая техника. В результате возникает определенная погрешность, которую необходимо учитывать при расшифровке анализа.
Распределительные хроматографические методы анализа чувствительны к характеристикам используемой бумаги. Она должна соответствовать следующим критериям:
- химическая чистота;
- нейтральность;
- инертность по отношению к реагентам в пробе;
- однородность.
При подборе материала учитывается также ориентация волокон, качество целлюлозы, сорбируемость. Параметры определяют скорость движения раствора и осаждения обнаруживаемых молекул.
В бумажном методе есть еще один нюанс — некоторые вещества могут поменять свойства носителя с гидрофильных на гидрофобные, что полностью нарушит ход эксперимента. В таком случае хроматографическая бумага предварительно пропитывается парафином или растительными маслами.
Растворители в распределительном методе
Большое влияние на точность хроматографических методов анализа оказывает выбранный растворитель. В качестве подвижной фазы необходимо взять жидкость, которая в меньшей степени растворяет обнаруживаемые компоненты, чем неподвижная фаза. Если пренебречь данным условием, метод не сработает: при слишком высокой растворимости проба пройдет вместе с жидкостью, не адсорбируясь на поверхности, при слишком низкой — останется на начальной линии и не даст требуемую для расшифровки градацию.
Если с помощью распределительного метода анализируется водорастворимая смесь, в качестве неподвижной фазы берется очищенная вода, в качестве подвижной — любой удобный органический растворитель. Выбранные жидкости не должны смешиваться, менять свои свойства в процессе исследования, важна их доступность и нетоксичность для человека.
Распределительные хроматографические методы анализа основаны на использовании смешанных фаз: смесей спиртов друг с другом и органическими кислотами, аммиаком, водных растворов фенола или крезола и так далее. Меняя концентрацию, насыщенность и пропорции в растворе удается плавно менять коэффициент Rf, создавать оптимальные условия для анализа, и получать дополнительные данные при расшифровке хроматограммы.
Как и прочие хроматографические методы анализа, бумажная хроматография определяет и качественный, и количественный состав пробы. В первом случае изучается специфическая окраска пятен на хроматограмме и анализируется числовое значение Rf для каждого обнаруживаемого реактива.
Для определения количественного состава смеси исследуется площадь образовавшихся пятен, интенсивность их окраски. Также применяют метод вымывания, при котором каждое цветовое пятно обрабатывают экстрагентом и затем подсчитывают количество вымытого вещества.
Тонкослойный хроматографический метод
Хроматографические методы анализа отличаются информативностью, сложностью проведения и актуальностью для решения практических промышленных задач. Одним из самых распространенных является метод тонкослойной хроматографии (ТСХ), разработанный группой ученых в 1938 году.
Твердая фаза наносится тонким слоем на специально подготовленную стеклянную, металлическую или пластиковую пластину. Затем на ее край лаборант вносит анализируемую пробу и погружает пластинку в жидкий растворитель, выступающий в качестве подвижной фазы. Под действием капиллярных сил исследуемый состав начинает двигаться по сорбенту, разделяясь на свои компоненты. Диффузия в твердом неподвижном слое происходит в двух направлениях: продольном и поперечном, что дает дополнительные сведения для анализа.
Особенность хроматографического метода заключается в относительной простоте исполнения. Для проведения эксперимента требуются:
- Пластинки для твердого адсорбента. Обычно подложки изготавливаются из алюминиевой фольги, полимерной пленки или стекла.
- Сорбент. Чаще других в данном методе применяются сорбенты из силикагеля, крахмала и целлюлозы.
- Растворитель. Выбор подвижной фазы зависит от физико‑химических свойств твердого вещества и исследуемых реагентов. Как и в бумажном методе, допустимо использование многокомпонентных жидкостей.
После окончания работы перед построением хроматографического графика пластинку опрыскивают проявляющим реактивом либо подвергают воздействию ультрафиолета. Затем приступают к определению компонентов пробы и их дальнейшему изучению любым удобным для лаборанта методом.
Качественные и количественные методы анализа в ТСХ
Для качественного исследования пробы одним из самых надежных и показательных является «метод свидетелей». Вместе с составом на линию старта наносятся индивидуальные вещества («свидетели») — предполагаемые компоненты смеси. На все жидкости влияют одинаковые силы, поэтому совпадение коэффициента Rf одного из «свидетелей» с компонентом реагента позволяет предположить наличие в пробе данного вещества.
Что касается количественных определений в данном методе, то они выполняются непосредственно на пластине либо уже после снятия с нее слоя сорбента. В первом случае измеряется площадь цветового пятна и с помощью заранее подготовленного графика вычисляется количество вещества.
Однако более показательным считается спектрофотометрический метод. Сорбент удаляется с пластинки и помещается в специальное оборудование, которое и показывает процентное содержание различных компонентов с высокой точностью.
Ионообменный хроматографический метод
Метод ионообменной хроматографии основан на замене элементарных частиц, входящих в реактив, на атомы, содержащиеся в ионообменнике. Поэтому результативность анализа зависит от параметров используемого оборудования. Современные ионообменники обладают важными преимуществами:
- Высокая обменная емкость.
- Воспроизводимые ионообменные свойства.
- Устойчивость к воздействию кислот и щелочей, любых сильных окислителей.
Для их производства чаще всего используются различные полимерные соединения: например, полистирол с разным набором функциональных групп, определяющим характерные свойства готового материала.
Ионообменный хроматографический метод применяется преимущественно для разделения элементарных частиц, после которого можно провести количественный подсчет анализируемых компонентов. Данная технология используется для обнаружения разнообразных анионов в питьевой и технической воде, продуктах переработки, пищевом, фармацевтическом и химическом сырье. Наиболее показателен метод для определения катионов щелочных и щелочноземельных металлов, и замещенных солей аммония.
Перспективы развития хроматографических методов
Хроматографические методы анализа постоянно совершенствуются и модифицируются. Появляются новые технологии, позволяющие определять компоненты смеси в наноконцентрациях. Благодаря этому удается повысить качество готовой продукции в различных отраслях промышленности, минимизировать экологические риски за счет установления жесткого контроля над составом сточных вод.
Однако возможности хроматографии ограничены не только применяющимися методами, но и используемым оборудованием. Важно, чтобы хроматографы отвечали следующим требованиям:
- Простая подготовка и введение проб.
- Быстрое получение результатов и легкая расшифровка хроматографических графиков.
- Принцип работы, основанный на передовых методах.
- Максимальная точность анализа.
- Нивелирование погрешностей, возникающих из‑за физико‑химических свойств используемых подвижных и неподвижных фаз.
- Минимальные затраты на ввод оборудования в эксплуатацию и его дальнейшее обслуживание.
- Возможность анализа сырья или продукции без прерывания основного технологического процесса.
- Определение широкого спектра соединений, включая летучие углеводороды и другие сложные для обнаружения вещества.
- Быстрое обучение персонала методам работы с лабораторным оборудованием.
Дальнейшее совершенствование хроматографов позволит удешевить хроматографические методы анализа и расширить области их применения. Именно к этому и стремится компания ООО «НПФ Мета‑хром». Мы предлагаем высококлассное оборудование, соответствующее всем стандартам качества. Узнать подробную информацию о методах работы на хроматографах можно у менеджеров по контактному телефону компании или с помощью формы обратной связи в разделе «Контакты».
Типы данных. Переменные. Урок 4 курса «Python. Введение в программирование»
Данные и их типы
В реальной жизни мы совершаем различные действия над окружающими нас предметами, или объектами. Мы меняем их свойства, наделяем новыми функциями. По аналогии с этим компьютерные программы также управляют объектами, только виртуальными, цифровыми. Пока не дойдем до уровня объектно-ориентированного программирования, будем называть такие объекты данными.
Очевидно, данные бывают разными. Часто компьютерной программе приходится работать с числами и строками. Так на прошлом уроке мы работали с числами, выполняя над ними арифметические операции. Операция сложения выполняла изменение первого числа на величину второго, а умножение увеличивало одно число в количество раз, соответствующее второму.
Числа в свою очередь также бывают разными: целыми, вещественными, могут иметь огромное значение или очень длинную дробную часть.
При знакомстве с языком программирования Python мы столкнемся с тремя типами данных:
целые числа (тип
int
) – положительные и отрицательные целые числа, а также 0 (например, 4, 687, -45, 0).числа с плавающей точкой (тип
float
) – дробные, они же вещественные, числа (например, 1. 45, -3.789654, 0.00453). Примечание: для разделения целой и дробной частей здесь используется точка, а не запятая.строки (тип
str
) — набор символов, заключенных в кавычки (например, «ball», «What is your name?», ‘dkfjUUv’, ‘6589’). Примечание: кавычки в Python могут быть одинарными или двойными; одиночный символ в кавычках также является строкой, отдельного символьного типа в Питоне нет.
Операции в программировании
Операция – это выполнение каких-либо действий над данными, которые в данном случае именуют операндами. Само действие выполняет оператор – специальный инструмент. Если бы вы выполняли операцию постройки стола, то вашими операндами были бы доска и гвоздь, а оператором – молоток.
Так в математике и программировании символ плюса является оператором операции сложения по отношению к числам. В случае строк этот же оператор выполняет операцию конкатенации, то есть соединения.
>>> 10.25 + 98.36 108.61 >>> 'Hello' + 'World' 'HelloWorld'
Здесь следует для себя отметить, что то, что делает оператор в операции, зависит не только от него, но и от типов данных, которыми он оперирует. Молоток в случае нападения на вас крокодила перестанет играть роль строительного инструмента. Однако в большинстве случаев операторы не универсальны. Например, знак плюса неприменим, если операндами являются, с одной стороны, число, а с другой – строка.
>>> 1 + 'a' Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for +: 'int' and 'str'
Здесь в строке TypeError: unsupported operand type(s) for +: 'int' and 'str'
интерпретатор сообщает, что произошла ошибка типа – неподдерживаемый операнд для типов int
и str
.
Изменение типов данных
Приведенную выше операцию все-таки можно выполнить, если превратить число 1 в строку «1». Для изменения одних типов данных в другие в языке Python предусмотрен ряд встроенных в него функций (что такое функция в принципе, вы узнаете в других уроках). Поскольку мы пока работаем только с тремя типами (int
, float
и str
), рассмотрим вызовы соответствующих им функций – int()
, float()
, str()
.
>>> str(1) + 'a' '1a' >>> int('3') + 4 7 >>> float('3.2') + int('2') 5.2 >>> str(4) + str(1.2) '41.2'
Эти функции преобразуют то, что помещается в их скобки соответственно в целое число, вещественное число или строку. Однако преобразовать можно не все:
>>> int('hi') Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid literal for int() with base 10: 'hi'
Здесь возникла ошибка значения (ValueError
), так как передан литерал (в данном случае строка с буквенными символами), который нельзя преобразовать к числу с основанием 10. Однако функция int
не такая простая:
>>> int('101', 2) 5 >>> int('F', 16) 15
Если вы знаете о различных системах счисления, то поймете, что здесь произошло.
Обратим внимание еще на одно. Данные могут называться значениями, а также литералами. Эти три понятия («данные», «значение», «литерал») не обозначают одно и то же, но близки и нередко употребляются как синонимы. Чтобы понять различие между ними, места их употребления, надо изучить программирование глубже.
Переменные
Данные хранятся в ячейках памяти компьютера. Когда мы вводим число, оно помещается в какую-то ячейку памяти. Но как потом узнать, куда именно? Как впоследствии обращаться к этим данными? Нужно как-то запомнить, пометить соответствующую ячейку.
Раньше, при написании программ на машинном языке, обращение к ячейкам памяти осуществляли с помощью указания их регистров, то есть конкретно сообщали, куда положить данные и откуда их взять. Однако с появлением ассемблеров при обращении к данным стали использовать словесные переменные, что куда удобней для человека.
Механизм связи между переменными и данными может различаться в зависимости от языка программирования и типов данных. Пока достаточно запомнить, что в программе данные связываются с каким-либо именем и в дальнейшем обращение к ним возможно по этому имени-переменной.
Слово «переменная» обозначает, что сущность может меняться, она непостоянна. Действительно, вы увидите это в дальнейшем, одна и та же переменная может быть связана сначала с одними данными, а потом – с другими. То есть ее значение может меняться, она переменчива.
В программе на языке Python, как и на большинстве других языков, связь между данными и переменными устанавливается с помощью знака =
. Такая операция называется присваивание (также говорят «присвоение»). Например, выражение sq = 4
означает, что на объект, представляющий собой число 4, находящееся в определенной области памяти, теперь ссылается переменная sq, и обращаться к этому объекту следует по имени sq.
Имена переменных могут быть любыми. Однако есть несколько общих правил их написания:
Желательно давать переменным осмысленные имена, говорящие о назначении данных, на которые они ссылаются.
Имя переменной не должно совпадать с командами языка (зарезервированными ключевыми словами).
Имя переменной должно начинаться с буквы или символа подчеркивания (_), но не с цифры.
Имя переменной не должно содержать пробелы.
Чтобы узнать значение, на которое ссылается переменная, находясь в режиме интерпретатора, достаточно ее вызвать, то есть написать имя и нажать Enter.
>>> sq = 4 >>> sq 4
Вот более сложный пример работы с переменными в интерактивном режиме:
>>> apples = 100 >>> eat_day = 5 >>> day = 7 >>> apples = apples - eat_day * day >>> apples 65
Здесь фигурируют три переменные: apples, eat_day и day. Каждой из них присваивается свое значение. Выражение apples = apples - eat_day * day
сложное. Сначала выполняется подвыражение, стоящее справа от знака равенства. После этого его результат присваивается переменной apples, в результате чего ее старое значение (100) теряется. В подвыражении apples - eat_day * day
вместо имен переменных на самом деле используются их значения, то есть числа 100, 5 и 7.
Практическая работа
Переменной var_int присвойте значение 10, var_float — значение 8.4, var_str — «No».
Значение, хранимое в переменной var_int, увеличьте в 3.5 раза. Полученный результат свяжите с переменной var_big.
Измените значение, хранимое в переменной var_float, уменьшив его на единицу, результат свяжите с той же переменной.
Разделите var_int на var_float, а затем var_big на var_float. Результат данных выражений не привязывайте ни к каким переменным.
Измените значение переменной var_str на «NoNoYesYesYes». При формировании нового значения используйте операции конкатенации (
+
) и повторения строки (*
).Выведите значения всех переменных.
Примеры решения и дополнительные уроки в pdf-версии и android-приложении курса
Постоянная Планка | Определение, единицы, символы и факты
- Ключевые люди:
- Макс Планк Роберт Милликен
- Похожие темы:
- электромагнитное излучение Планковская длина Планковская масса Планковская плотность
Просмотреть весь связанный контент →
Популярные вопросы
Каково значение постоянной Планка?
Значение постоянной Планка в единицах метр-килограмм-секунда равно 6,62607015 × 10 −34 джоуля в секунду.
Каково определение постоянной Планка?
Постоянная Планка — это фундаментальная физическая постоянная характеристика математических формулировок квантовой механики. Размерность постоянной Планка — это произведение энергии на время, величина, называемая действием. Поэтому постоянная Планка часто определяется как элементарный квант действия.
Какой символ у постоянной Планка?
Постоянная Планка обозначается символом ч .
Когда была введена постоянная Планка?
Немецкий физик Макс Планк ввел константу в 1900 году в своей точной формулировке распределения излучения, испускаемого идеальным поглотителем лучистой энергии, называемым черным телом.
Постоянная Планка , (символ h ), фундаментальная физическая постоянная, характерная для математических формулировок квантовой механики, описывающая поведение частиц и волн в атомном масштабе, включая корпускулярный аспект света. Немецкий физик Макс Планк ввел постоянную в 1900 в его точной формулировке распределения излучения, испускаемого черным телом, или идеальным поглотителем лучистой энергии ( см. закон излучения Планка). Значение постоянной Планка в этом контексте заключается в том, что излучение, такое как свет, испускается, передается и поглощается дискретными энергетическими пакетами или квантами, определяемыми частотой излучения и значением постоянной Планка. Энергия E каждого кванта или каждого фотона равна постоянной Планка ч раз больше частоты излучения, обозначаемой греческой буквой nu, ν, или просто E = ч ν. Модифицированная форма постоянной Планка, называемая ч -бар (ℏ), или сокращенная постоянная Планка, в которой ℏ равно ч , деленное на 2π, представляет собой квантование углового момента. Например, угловой момент электрона, связанного с атомным ядром, квантуется и может быть только кратен ч бар.
Планковская длина: почему теорию струн трудно проверить
Посмотреть все видео к этой статьеРазмерность постоянной Планка — это произведение энергии на время, величина, называемая действием. Поэтому постоянная Планка часто определяется как элементарный квант действия. Его значение в единицах метр-килограмм-секунда определяется точно как 6,62607015 × 10 −34 джоулей в секунду.
Britannica Quiz
Физика и естественное право
Редакция Британской энциклопедии Эта статья была недавно отредактирована и обновлена Адамом Августином.
Законы движения Ньютона — Исследовательский центр Гленна
Законы движения сэра Исаака Ньютона объясняют взаимосвязь между физическим объектом и силами, действующими на него. Понимание этой информации дает нам основу современной физики.
На этой странице:
Что такое законы движения Ньютона?
- Объект в состоянии покоя остается в состоянии покоя, а объект в движении остается в движении с постоянной скоростью и по прямой, если на него не действует неуравновешенная сила.
- Ускорение объекта зависит от массы объекта и величины приложенной силы.
- Всякий раз, когда один объект воздействует на другой объект, второй объект оказывает равную и противоположную силу на первый.
Сэр Исаак Ньютон работал во многих областях математики и физики. Он разработал теорию гравитации в 1666 году, когда ему было всего 23 года. В 1686 году он представил свои три закона движения в «Principia Mathematica Philosophiae Naturalis».
Разработав свои три закона движения, Ньютон произвел революцию в науке. Законы Ньютона вместе с законами Кеплера объяснили, почему планеты движутся по эллиптическим орбитам, а не по кругу.
Ниже представлен короткий фильм с участием Орвилла и Уилбура Райт и обсуждение того, как законы движения Ньютона применимы к полету их самолетов.
Первый закон Ньютона: инерция
Объект в состоянии покоя остается в покое, а объект в движении остается в движении с постоянной скоростью и по прямой, если на него не действует неуравновешенная сила.
Первый закон Ньютона гласит, что каждый объект будет оставаться в покое или в равномерном прямолинейном движении, если он не будет вынужден изменить свое состояние под действием внешней силы. Эта склонность сопротивляться изменениям в состоянии движения есть инерция . Если все внешние силы уравновешивают друг друга, то результирующая сила не действует на объект. Если на объект не действует результирующая сила, то объект будет поддерживать постоянную скорость.
Примеры инерции, связанные с аэродинамикой:
- Движение самолета, когда пилот меняет положение дроссельной заслонки двигателя.
- Движение мяча, падающего сквозь атмосферу.
- Запуск модели ракеты в атмосферу.
- Движение воздушного змея при смене ветра.
Второй закон Ньютона: сила
Ускорение объекта зависит от массы объекта и величины приложенной силы.
Его второй закон определяет силу равно изменению импульса (масса, умноженная на скорость) за изменение во времени. Импульс определяется как произведение массы m объекта на его скорость V .
Предположим, что у нас есть самолет в точке «0», определяемой его местоположением X 0 и временем t 0 . Самолет имеет массу m 0 и движется со скоростью V 0 . Внешняя сила F на самолет, показанный выше, перемещает его в точку «1». Новое местоположение самолета X 1 и время t 1 .
Масса и скорость самолета изменяются в процессе полета до значений м 1 и V1 . Второй закон Ньютона может помочь нам определить новые значения V 1 и m 1 , если мы знаем, насколько велика сила F . Давайте просто возьмем разницу между условиями в точке «1» и условиями в точке «0».
F = (M 1 * V 1 — M 0 * V 0 ) / (T 1 — T 0 )14S. м*В). Итак, на данный момент мы не можем разделить, насколько изменилась масса и насколько изменилась скорость. Мы знаем только, насколько изменился продукт (m * V).
Предположим, что масса остается неизменной, равной м . Это допущение довольно хорошо для самолета, потому что единственное изменение массы будет связано с расходом топлива между точкой «1» и точкой «0». Вес топлива, вероятно, невелик по сравнению с весом остальной части самолета, особенно если мы рассматриваем только небольшие изменения во времени. Если бы мы обсуждали полет бейсбольного мяча, то, конечно, масса оставалась бы постоянной. Но если бы мы обсуждали полет ракеты-бутылки, то масса не остается постоянной и мы можем смотреть только на изменение импульса. Для постоянной массы м , второй закон Ньютона выглядит так:
F = m * (V 1 – V 0 ) / (t 1 – t 0 ) , деленное на изменение скорости в изменение во времени является определением ускорения a . Затем второй закон сводится к более знакомому произведению массы на ускорение: F = m * aПомните, что это соотношение справедливо только для объектов с постоянной массой. Это уравнение говорит нам, что объект, на который действует внешняя сила, будет ускоряться и что величина ускорения пропорциональна величине силы. Величина ускорения также обратно пропорциональна массе объекта; при равных силах более тяжелый объект будет испытывать меньшее ускорение, чем более легкий. Учитывая уравнение количества движения, сила вызывает изменение скорости; и точно так же изменение скорости порождает силу. Уравнение работает в обе стороны.
Скорость, сила, ускорение и импульс имеют как величину , так и направление связанных с ними. Ученые и математики называют это векторной величиной. Уравнения, показанные здесь, на самом деле являются векторными уравнениями и могут применяться в каждом из направлений компонентов. Мы смотрели только в одном направлении, а вообще объект движется во всех трех направлениях (вверх-вниз, влево-вправо, вперед-назад).
Пример силы, связанной с аэродинамикой:
- Движение самолета в результате действия аэродинамических сил, веса самолета и тяги.
Третий закон Ньютона: действие и противодействие
Всякий раз, когда один объект воздействует на второй объект, второй объект оказывает равную и противоположную силу на первый.
Его третий закон гласит, что на каждое действие (сила) в природе существует равное и противоположное противодействие . Если объект A воздействует на объект B, объект B также оказывает равную и противоположную силу на объект A. Другими словами, силы возникают в результате взаимодействий.
Примеры действия и противодействия, связанные с аэродинамикой:
- Движение подъемной силы от аэродинамического профиля, воздух отклоняется вниз под действием аэродинамического профиля, и в результате реакции крыло толкается вверх.
- Движение вращающегося шара, воздух отклоняется в одну сторону, а мяч реагирует движением в противоположную сторону
- Движение реактивного двигателя создает тягу, и горячие выхлопные газы выходят из задней части двигателя, а сила тяги создается в противоположном направлении.