Разное

Цветовая сетка для монитора: Калибровка и профилирование мониторов / Хабр

Содержание

Цифровой цвет и фотоматрица

Цифровой цвет. Первая часть статьи.

Что происходит со светом, после того, как он попадает на матрицу цифрового фотоаппарата?

Матрица похожа на сетчатку глаза. Не смотря на высокую прецизионность технологий, каждая матрица в своем роде уникальна. И что бы каким-то образом получить приличную адекватность электронной картинки, ученые и инженеры серьезно потрудились.

Конечно, существуют стандарты и производители матриц их четко придерживаются, но как и каждй человек, так и матрицы чуть-чуть по-своему воспринимают цвета. Если в колориметрии пренебрегают таким малым разбросом, так и мы не будем более на него обращать внимание.

Мы не будем рассматривать цветовые искажения в аналоговом тракте фотоаппарата, например – хроматическую аберрацию, наша тема – цифровой цвет.

Какие же характеристики важны для  «электронной сетчатки»?

Первая – цветовой охват.

Помните диаграмму цветности xyY из предыдущей статьи? А цветовое пространство человека в системе xyY? Эта трехмерная фигура, расположенная в соответствующей координатной системе и будет определять, какие цвета матрица или любое другое устройство (от фотопленки до монитора) может воспринять или воспроизвести. Чем больше объем этой фигуры – тем больший цветовой охват.

Цветовой охват человеческого глаза на сегодня недостижим ни для одного из существующих типов сенсоров.

Примерное представление может дать рисунок: самая большая фигура – примерный (к сожалению, под рукой не оказалось точного профиля на человека) охват человеческого зрения, внутри него – охват стандарта sRGB (на него сейчас ориентируются все массовые мониторы и цифровые фотокамеры). Внутри sRGB – синяя область – это охват Фотобумаги Kodak Professional. Видите, как уменьшается цветовой охват по мере перехода от реального изображения к фотографии?

Вторая характеристика – число воспринимаемых (воспроизводимых) цветов.

Она определяет сколько элементов (цветов) внутри области охвата способно различить устройство.

Охват может быть и большим, но если число воспринимаемых цветов (битность цвета) мало, то изображение будет как-бы постеризованное, с резкими переходами на цветовых градиентах. Обычно чем больше область цветового охвата, тем больше число различимых цветов.

Пожалуйста не путайте цветовой охват, кол-во воспринимаемых цветов ( «цветовое разрешение») и разрядность ( «битность») итогового изображения.

Форматы файлов в фотокамерах

Камера (в зависимости от модели) может сохранять снимок в файлах различного формата.

Если Вы еще не сталкивались с компьютерными графическими файлами, коротко расскажу о том, что это такое. Есть два принципиально различных способа записи изображения — векторное и растровое. Первый к цифровому фото не имеют прямого отношения, т.к. изображения там представлены в виде наборов геометрических фигур, заданных формулами. Вторые – растровые как раз то, с чем мы и будем иметь дело.

Что такое растровый файл?

Это двухмерная матрица или таблица, где каждая ячейка – это элемент изображения – пиксел, который характеризуется цветом. Цвет можно записать в любой системе (см. предыдущую статью). В силу того, что большую часть цифровых изображений мы рассматриваем с помощью мониторов, это – RGB, т. е. три набора чисел – три канала. Чем выше разрядность канала, тем больше информации о цвете пикселя можно сохранить, но тем больше размер файла. Именно поэтому стараются придумать всяческие ухищрения – алгоритмы сжатия, дабы размер файла сократить.

  • JPEG
  • RAW
  • TIFF

Самый распространенный (но отнюдь не самый простой) – JPEG. Этот формат предусматривает сжатие информации с потерями. Вдаваться в подробности не будем. Заметим, что сжатие происходит за счет усреднения информации о цветности и яркости в группах соседних пикселей. Такое возможно из-за несовершенства зрительной системы человека: нерезкие изменения цветности или яркости глаз не распознает.

Главный вывод: JPEG предназначен для просматриваемых человеком изображений. Он НЕ подходит в качестве рабочего формата (для кардинального редактирования). Т.е. если Вы сняли кадр в JPEG, немного отредактировали цветовой баланс, яркость и контраст, а затем отнесли в минилаб для печати – все ОК. Но если вы собираетесь в дальнейшем неоднократно редактировать что-то      в файле, выправить грубые ошибки экспозиции, качественно подавить шумы – формат JPEG не подходит. При каждом пересохранении в нем происходит накопление ошибок сжатия с потерями: уменьшается резкость (визуальное разрешение файла), сокращается количество цветов, появляются хорошо видимые глазом артефакты сжатия (мозаичность изображения).

Уж если Ваша камера позволяет сохранять только в JPEG или Вы по какой-то причине сняли кадр в JPEG, то для последующего редактирования сохраните его в родном формате Photoshop (PSD) или TIFF… да в любом формате сжатия БЕЗ потерь (BMP, PNG, TGA).

Этот формат представляет непосредственный слепок информации с матрицы камеры. У каждой фирмы и класса камер он свой. Если камера поддерживает такой формат, то обязательно в софте, поставляемом с камерой есть конвертор, который, во-первых сможет перевести информацию в удобоваримый формат (обычно TIFF и JPEG), а во-вторых подправить баланс белого, яркость, контраст, цветовой баланс и применить ряд фильтров. Обычно конвертор дублирует все функции обработки изображения в камере, включая малоприменимые эффекты типа сепии.

Формат «одноразовый»: т.е. пересохранить файл в него нельзя. Это аналог пленочного негатива – эдакий цифровой негатив. Я все важные или сложные по условиям съемки кадры стараюсь снимать именно в RAW. Потом сохраняю эти файлы как исходники, а работаю уже в PSD.

Для Adobe Photoshop есть «родной» плагин, позволяющий читать RAW-форматы большинства камер. Однако не всегда он лучше родных конверторов. Скажем Canon FileViewer эффективно подавляет шумы и дает более сочные цвета, чем  «адобовский» плагин.

Формат, позволяющий выбрать алгоритм сжатия, в т.ч. и полностью его отключить. Для обеспечения совместимости обычно используют TIFF без сжатия и дополнительных каналов, т.е. аналог BMP. Однако TIFF хорошо поддерживает 16-битные изображения. Иногда сами фотокамеры предлагают записывать файл в этом формате, как альтернативном JPEG.

Профайлы

Вот о них, родимых, все почему-то и забывают. Профайл как раз и описывает цверовые характеристики устройства и еще ряд параметров, необходимых для того, чтобы при дальнейшей обработке файла можно было четко сказать какого цвета тот или иной пиксель. Иными словами – профайл характеризует устройство на котором было получено изображение.

Еще раз: БЕЗ профайла графический файл информации о цвете НЕ несет.

Цвет – это не набор байтов в трех каналах. Цвет – это психофизиологичекое ощущение, которое более-менее увязали со спектральным составом цвета, падающего на сетчатку. Если не связать численные коды цвета пикселя со спектром, цвет мы не определим. А профайл как раз и позволяет осуществить такую связь, но уже в компьютере.

Про профайлы и системы управления цветом можно написать большую статью и не одну. Пока замечу лишь одно. В последние годы стандартом принят sRGB. Профиль, описывающий этот цветовой охват установлен по-умолчанию с 7-й версии Photoshop, прикрепляется к снимкам большинства массовых цифровых камер, новые мониторы и принтеры настраиваются под него.

Так что, если  «ничего не трогать», а главное – если нет необходимости экспериментировать с выбором других профилей и охватов, то все должно быть ОК. Если таковая необходимость есть – нужно основательно изучать литературу по цветопередаче.

Допечатная обработка

…обычно выполняется дома… обычно в Adobe Photoshop, ставшим чуть ли не индустриальным стандартом. Что у нас дома? Обычный монитор дюймов на 17 – 19. Что есть монитор – устройство отображения. В цветовом плане он, как и матрица фотоаппарата имеет цветовой охват и цветовое разрешение.

Здесь же замечу, что для  «художественной» работы с фото более подходит монитор с электронно-лучевой трубкой, а не TFT. Потому что технология изготовления трубок достигла совершенства, а TFT-матрицы все еще развиваются. Поэтому цветовое разрешение и цветовой охват у традиционных «трубочных» мониторов лучше. Заметно лучше. TFT не может воспроизводить цвет и яркость во всех направлениях одинаково, как трубка. Оператору достаточно немного наклонить голову, и картинка сразу меняет цвет, яркость, контраст. Где уж тут до тонких настроек!

У монитора тоже есть профайл, думаю, Вы об этом уже догадались. Его нужно обязательно подключить к системе: (Свойства экрана, Дополнительно, Управление цветом). Рекомендую – откалибровать и одновременно получить более точный профайл в программе Adobe Gamma. Профайлы от производителя – усреднение по ряду моделей. Верх совершенства – программно-аппаратные комплексы по калибрации мониторов. Но это дорого и необоснованно для непрофессиональной работы.

Монитор, на котором обрабатывают фото для цифровой печати настоятельно рекомендуется отрегулировать на цветовую температуру в 6500К, после чего вновь откалибровать и получить профайл.

При кардинальном изменении освещения в помещении и не реже раза в год производить повторные калибровки монитора. За год интенсивного использования могут уплыть параметры люминофоров.

Цифровая печать в фотосервисе

Каким образом цифровые минилабы обращают файл с изображением в отпечаток на фотобумаге? Цифровых минилабов сейчас довольно много, но подходов к формированию изображения на фотобумаге несколько. Рассмотрим основные из их.

Первый заключается в использовании трех лазеров (источники излучения высокой спектральной чистоты, т.е. монохромного излучения) основных цветов: красный, зеленый и синий. Они смешиваются в необходимых пропорциях в оптической системе минилаба и благодаря вращающейся оптической призме построчно экспонируют фотобумагу. На этом этапе происходит традиционный аддитивный синтез. Основное преимущество такого подхода по сравнению с прочими состоит в том, что каждая точка изображения формируется практически идеальным источником света, что обеспечивает очень хорошую однородность цвета и яркости по всему полю фотографии.

Второй подход использует линейки светоизлучающих элементов, обычно светодиодов. По линейке на каждый основной цвет. Т.е. никакой строчной развертки и вращающейся призмы нет – это несколько упрощает и удешевляет конструкцию. Однако каждый из элементов линейки обладает уникальными световыми характеристиками, поэтому время от времени печатающие узлы требуют калибровки. Ясно, что, не смотря на калибровку, однородность по полю фотографии проигрывают «лазерному», да и пятно лазера меньше по диаметру, что позволяет иметь наивысшее разрешение.

Третий подход — разновидность второго подхода – использование в линейке не светоизлучающих элементов, а миниатюрных заслонок (световых микроклапанов), которые срабатывают от электронных импульсов и в нужный момент пропускают необходимое количество света от источника опорного цвета (лампа и сменные светофильтры). Однородность изображения выше, но сложнее конструкция. Высокое разрешение – не конек такой системы.

Четвертый поход — вместо заслонок – микрозеркала, а вместо линеек – матрица. Т.е. фотобумага экспонируется не построчно, а за три раза – для каждого из основных цветов. Плюсы: однородность по полю изображение. Минусы: низкое разрешение.

Пятый подход похож на применяемый в обычном мониторе на базе электроннолучевой трубки. Только монитор этот плоский, всего в одну строку. Изображение рисуется на этой единственной строке электронным лучом по мере движения фотобумаги вдоль трубки. Чтобы луч не рассеивался в стекле по дороге к эмульсии фотобумаги, экспонирующая поверхность трубки состоит из оптических волокон. Разрешение такой метод дает солидное — до 500dpi, но требует калибровки, т.к. люминофору свойственна неоднородность и уплывание параметров с течением времени.

Шестой подход напоминает о цифровых проекторах. Изображение формируется на базе жидкокристаллической матрицы, работающей на просвет. Матрица одна, один источник света и три светофильтра. Последовательно меняются светофильтры и изображение (черно-белое) на матрице – опять же аддитивны синтез. Применяется хитрость для сглаживания пикселизации: при каждой смене светофильтра матрица, расположенная под небольшим углом к плоскости фотобумаги поворачивается вокруг своей оси.

Что выбрать – это самая серьезная проблема владельцев цифровых минилабов. Но простому пользователю неплохо представлять всю эту кухню и понимать, что высокое разрешение и однородность цвета и яркости по всему полю фотографии требуют дорогих технических решений, а это определяет и конечную стоимость одной фотографии.

На фотографии с вечеринки размера 10х15 с 2Мп камеры Вы вряд ли сможете заметить отличие вышеописанных технологий. Стоит ли тогда переплачивать?

А если это студийный снимок 20х30 с 6Мп? Стоит подумать о лазерной технологии… кстати говоря, для таких машин нужна специальная фотобумага. На фотобумаге пригодной для обычного аналогового минилаба снимок может не только не показать преимуществ лазерной технологии, но и вообще не получиться. Это обстоятельство связано в первую очередь с очень короткими импульсами (порядка единиц наносекунд) некоторых лазеров, используемых в системе экспонирования фотобумаги и очень узкими спектрами их излучения.

Что еще сказать на последок?

Цветовой охват обычной фотобумаги достаточно узкий. Поэтому приходится ужимать цвета, что бы вписаться во весь диапазон. Обычно для фотографий применяется схема при которой предпочтение отдается цветовым соотношениям и проработке на светлых участках. Не требуйте от операторов пурпурных или ядовито-зеленых цветов на фото, даже если они присутствовали во время съемки. Фотобумага неспособна их воспроизвести, в отличие от люминофоров экрана.

Белый цвет на фотобумаге немного желтоват (теплого тона), к этому нужно быть готовым. Включите 6500К на мониторе. После часа работы в таком режиме попробуйте на минуту переключиться в 9300К, а потом обратно. Видите как относителен белый цвет?

Что бы не возникало проблем с цветом на цифровых фотоснимках, как минимум необходимо:
  • Понимание, что цвет – это, прежде всего субъективное ощущение, а уже потом физическая величина.
  • Знание такого факта, как зависимость цвета предмета от цвета источников освещения. Под лампой накаливания и под ярким солнцем цвета на фотографии будут заметно отличаться.
  • Наличие правильно откалиброванного монитора.
  • По-умолчанию или верно измененные настройки системы управления цветами Windows и Adobe Photoshop (или любого в котором Вы работаете)
  • Взаимопонимание с работниками минилаба — либо Вы полностью доверяете цветокоррекцию оператору, либо за небольшую плату корректируете цветопередачу снимков вместе.
  • Понимание того, во сколько цветовой охват фотокамеры меньше цветового охвата глаза, а цветовой охват фотобумаги меньше цветового охвата фотокамеры, а хорошего монитора – и подавно.

Автор: Илья Бесхлебный © 2003г.

28.02.2013

— 4.8.1.

4.8.1. Основные понятия компьютерной графики

В компьютерной графике с понятием разрешения обычно проис­ходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти вилы разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана – это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком.

Разрешение принтера – это свойство принтера, выражающее коли­чество отдельных точек, которые могут быть напечатаны на участ­ке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения (табл.4.3) – это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером.

Физический размер (табл.4.3, табл.4.4) изображения может измеряться как в пикселах, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.

Если изображение готовят для демонстрации на экране то его ширину и высоту задают в пикселах, чтобы знать какую часть экрана оно занимает.

Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет. Нетрудно пересчитать размер изображения из пикселов в единицы длины или наоборот, если известно разрешение изобра­жения.

Таблица 4.3

Связь между линейным размером иллюстрации и размером файла 

при разных разрешениях отпечатка

Размер отпечатка

75 dpi

150 dpi

300 dpi

600 dpi

10х15 см (фотоснимок)

380 Кбайт

1,5 Мбайт

6 Мбайт

24 Мбайт

25×30 см (обложка журнала)

1,9 Мбайт

7,5 Мбайт

30 Мбайт

120 Мбайт

50×30 см (разворот журнала)

3,8 Мбайт

15 Мбайт

60 Мбайт

240 Мбайт

Для работы с растровой графикой компьютер выбирают, исходя из постав­ленных задач. Для обычного домашнего занятия цифровой фотографией необходим компьютер, имеющий оперативную память порядка 128 Мбайт и процессор с производительностью от 300 Мгц и выше. Для подготовки рекламных иллюстраций необходим компьютер с оперативной памятью до 256 Мбайт и процессором от 500 Мгц и выше. Для подготовки полно­цветных журнальных полос нужны специальные компьютеры, которые иногда называют графическими рабочими станциями.

Таблица 4.4

Связь между размером иллюстрации (в пикселях) и размером 

отпечатка (в мм) при разных разрешениях отпечатка

Размер иллюстрации

75 dpi

150 dpi

300dpi

600 dpi

640×480

212×163

108×81

55×40

28×20

800×600

271×203

136×102

68×51

34×26

1024×768

344×260

173×130

88×66

44×33

1152×864

390×293

195×146

98×73

49×37

1600×1200

542×406

271×203

136×102

68×51

На практике высококачественная печать полноцветного изображения обеспечивается при разрешении файла 200-300 dpi. При печати изображе­ния, занимающего полный экран очень большого монитора, образуется отпечаток размером всего лишь с небольшую фотографию.

Цветовое разрешение и цветовые модели. При работе с цветом используются понятия цветовое разрешение (его еще называют глубиной цвета) и цветовая модель. Цветовое разрешение определяет метод кодирования цветовой информации, и от него зависит то, сколько цветов на экране может отобра­жаться одновременно. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пикселя. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65 536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное ото­бражение 16,5 млн. цветов. Этот режим называется True Color.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделе­ния цветового оттенка на составляющие компоненты называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK и HSB.

Цветовая модель RGB. Наиболее проста для понимания и очевидна модель RGB. В этой модели работают мониторы и бытовые телевизоры. Любой цвет считается состоящим из трех основных компонентов: красного (Red), зеленою (Green) и синего (Blue). Эти цвета называются основными. Считается также, что при наложении одного компо­нента на другой яркость суммарного цвета увеличивается. Совме­щение трех компонентов дает нейтральный цвет (серый), который при большой яркости стремится к белому цвету.

Это соответствует тому, что мы наблюдаем на экране монитора, поэтому данную модель применяют всегда, когда готовится изобра­жение, предназначенное для воспроизведения на экране. Если изображение проходит компьютерную обработку в графическом редакторе, то его тоже следует представить в этой модели. В гра­фических редакторах имеются средства для преобразования изо­бражений из одной цветовой модели в другую.

Метод получения нового оттенка суммированием яркостей составляющих компонентов называют аддитивным методом. Он применяется всюду, где цветное изображение рассматривается в проходящем свете («на просвет»): в мониторах, слайд-проекторах и т. п.

Нетрудно догадаться, что чем меньше яркость, тем темнее оттенок. Поэтому в аддитивной модели центральная точка, имеющая нулевые значения компонен­тов (0, 0, 0), имеет черный цвет (отсутствие свечения экрана монитора). Белому цвету соответствуют максимальные значения составляющих (255, 255, 255).

Модель RGB является аддитивной, а ее компоненты: красный, зеленый и си­ний — называют основными цветами.

Цветовая модель CMYK. Эту модель используют для подготовки не экранных, а печатных изображений. Они отличаются тем, что их видят не в проходя­щем, а в отраженном свете. Чем больше краски положено на бумагу, тем больше света она поглощает и меньше отражает. Сов­мещение трех основных красок поглощает почти весь падающий свет, и со стороны изображение выглядит почти черным. В отличие от модели RGB увеличение количества краски приводит не к увеличению визуальной яркости, а наоборот к ее уменьшению. Поэтому для подготовки печатных изображений используется не аддитивная (суммирующая) модель, а субтрактивная (вычитаю­щая) модель. Цветовыми компонентами этой модели являются не основные цвета, а те, которые получаются в результате вычитания основных цветов из белого.

Эти три цвета называются дополнительными, потому что они допол­няют основные цвета до белого.

Существенную трудность в полиграфии представляет черный цвет. Теоретически его можно получить совмещением трех основ­ных или дополнительных красок, но на практике результат оказы­вается негодным. Поэтому в цветовую модель CMYK добавлен четвертый компонент — черный. Ему эта система обязана буквой К в названии (blасК).

Преобразование между моделями. Графические редакторы позволяют работать с цветным изобра­жением в разных цветовых моделях, но все-таки модель RGB для компьютера «ближе». Это связано с методом кодирования цвета байтами. Поэтому создавать и обрабатывать цветные изображения принято в модели RGB, а при выполнении цветоделения рисунок преобразовывают в модель CMYK. При печати рисунка RGB на цветном четырехцветном принтере драйвер принтера также пре­образует рисунок в цветовую модель CMYK.

Многие графические редакторы могут преобразовывать изображения из одной цветовой модели в другую. На рисунках видно, что при этом изменяется разложение на составляющие цвета.

Цветовая палитра. Цветовая палитра – это таблица данных, в которой хранится информация о том, каким кодом закодирован тот или иной цвет. Эта таблица создается и хранится вместе с графическим файлом.

Самый удобный для компьютера способ кодирования цвета – 24-раз-рядный, True Color. В этом режиме на кодирование каждой цветовой составляющей R (красной), G (зеленой) и В (синей) отводится по одному байту (8 битов). Яркость каждой составля­ющей выражается числом от 0 до 255, и любой цвет из 16,5 мил­лионов компьютер может воспроизвести по трем кодам. В этом случае цветовая палитра не нужна, поскольку в трех байтах и так достаточно информации о цвете конкретного пикселя.

Индексная палитра. Существенно сложнее обстоит дело, когда изображение имеет только 256 цветов, кодируемых одним байтом. В этом случае каждый цветовой оттенок представлен одним числом, причем это число выражает не цвет пикселя, а индекс цвета (его номер). Сам же цвет разыскивается по этому номеру в сопроводительной цвето­вой палитре, приложенной к файлу. Такие цветовые палитры еще называют индексными палитрами. Разные изображения могут иметь разные цветовые палитры. Например, в одном изображе­нии зеленый цвет может кодироваться индексом 64, а в другом изображении этот индекс может быть отдан розовому цвету. Если воспроизвести изображение с «чужой» цветовой палитрой, то зеленая елка на экране может оказаться розовой.

Фиксированная палитра. В тех случаях, когда цвет изображения закодирован двумя байтами (режим High Color), на экране возможно изображение 65 тысяч цветов. Разумеется, это не все возможные цвета, а лишь одна две­сти пятьдесят шестая доля общего непрерывного спектра красок, доступного в режиме True Color. В таком изображении каждый двухбайтный код тоже выражает какой-то цвет из общего спектра. Но в данном случае нельзя приложить к файлу индексную палит­ру, в которой было бы записано какой код какому цвету соответ­ствует, поскольку в этой таблице было бы 65 тысяч записей, и ее размер составил бы сотни тысяч байтов. Вряд ли есть смысл при­кладывать к файлу таблицу, которая может быть по размеру больше самого файла. В этом случае используют понятие фиксированной палитры. Ее не надо прикладывать к файлу, поскольку в любом графическом файле, имеющем шестнадцатиразрядное кодирова­ние цвета, один и тот же код всегда выражает один и тот же цвет.

Безопасная» палитра. Термин безопасная палитра используют в Web-графике. Поскольку скорость передачи данных в Интернете пока оставляет желать лучшего, для оформления Web-страниц не применяют графику, имеющую кодирование цвета выше 8-разрядного.

При этом возникает проблема, связанная с тем, что создатель Web-страницы не имеет ни малейшего понятия о том, на какой модели компьютера и под управлением каких программ будет просматриваться его произведение. Он не уверен, не превратится ли его «зеленая елка» в красную или оранжевую на экранах поль­зователей.

В связи с этим было принято следующее решение. Все наиболее популярные программы для просмотра Web-страниц (браузеры) заранее настроены на некоторую одну фиксированную палитру. Если разработчик Web-страницы при создании иллюстраций будет применять только эту палитру, то он может быть уверен, что пользователи всего мира увидят рисунок правильно.

В этой палитре не 256 цветов, как можно было бы предположить, а лишь 216. Это связано с тем, что в Интернете работают люди с разными компьютерами, а не только с IBM PC, и не все компью­теры могут воспроизводить 256 цветов.

Такая фиксированная палитра, жестко определяющая индексы для кодирования 216 цветов, называется безопасной палитрой.

Руководство по цветным мониторам

Автор: Адам Симмонс
Последнее обновление: 28 июля 2022 г.

 

Это подробная информационная статья. Если вам нужны рекомендации по конкретным моделям, посетите эту страницу.


Содержание

Введение

Мониторы

используются для самых разных задач, как для работы, так и для удовольствия. Личные предпочтения и бюджет могут ограничивать ваш выбор, когда речь идет о таких факторах, как размер и разрешение экрана, а также о потенциально желаемых характеристиках, таких как HDR и частота обновления. Независимо от бюджета и предпочтений важно, чтобы выбранный вами монитор подходил для поставленных перед ним задач. В этом руководстве рассматриваются ключевые области, на которые следует обратить внимание при выборе экрана для критически важной работы с цветом, такой как редактирование фотографий и видео.

Разрешение и четкость

Разрешение 1920 x 1080 (Full HD или 1080p) в течение достаточно долгого времени было чем-то вроде стандарта для мониторов, и большая часть видеоконтента по-прежнему основана на этом. Благодаря повышению мощности и возможностей системы, также доступен ряд моделей 3840 x 2160 («4K» UHD) . Благодаря современным методам сжатия и улучшениям подключения к Интернету это становится все более популярным для потокового мультимедиа в дополнение к физическим носителям, таким как Blu-ray. Особо популярное разрешение монитора находится между этими двумя, 2560 x 1440 (WQHD или 1440p) . Хотя некоторый контент на таких платформах, как YouTube, поддерживает это, за исключением видеоконтента, он широко не поддерживается. 16:9 является основным современным стандартом для создания и потребления мультимедиа, но некоторые предпочитают просматривать или создавать в других соотношениях сторон. Разрешения 21:9 UltraWide, такие как 3440 x 1440 (UWQHD) , могут быть весьма привлекательными для некоторых.

В то время как для редактирования видео обычно используется определенное разрешение, редактирование фотографий является более гибким. Современные камеры, в том числе на смартфонах, способны снимать в исключительно высоком разрешении. Редактирование на мониторе с высоким разрешением, безусловно, имеет смысл с улучшенной детализацией и четкостью за счет повышенной плотности пикселей. Для экрана заданного размера переход от Full HD к WQHD значителен, как и следующий шаг к «4K» UHD. Более высокое разрешение с соотношением сторон 16:9Соотношение сторон, такое как 5120 x 2880 («5K») и 7680 x 4320 («8K» UHD) , также доступны, но они намного более нишевые, чем альтернативы, рассмотренные ранее. При рассмотрении любого увеличения плотности пикселей то, сколько вы на самом деле получите от этого, зависит от типа редактирования, которое вы выполняете. Плюс другие факторы, такие как расстояние просмотра и глаза.

На четкость могут влиять и другие факторы, в том числе нечеткое расположение субпикселей. Наихудшими в этом отношении являются некоторые модели VA, использующие частичную субпиксельную подсветку, что потенциально серьезно влияет на четкость тонких краев. Хотя мы не будем включать такие модели в этот раздел по причинам, связанным с цветом, которые мы вскоре рассмотрим. Поверхность экрана также влияет на четкость: глянцевые поверхности меньше всего мешают изображению, а «более прочные» матовые поверхности с антибликовым покрытием больше всего. Глянцевые модели сейчас очень редки на рынке мониторов, но есть довольно много матовых антибликовых поверхностей от «легких» до «очень светлых», используемых на различных моделях, которые мы рекомендуем. Этот рассеянный свет от монитора меньше, чем «более сильные» матовые поверхности экрана, и дает меньше многослойности перед изображением. Поэтому четкость, которую они обеспечивают, выше, особенно если поверхность экрана также имеет относительно гладкую поверхность. Это предотвращает очевидный зернистый вид более светлого содержимого.

Как партнер Amazon я зарабатываю на соответствующих покупках, сделанных по ссылке ниже. По возможности вас перенаправят в ближайший магазин. Дополнительная информация о поддержке нашей работы.

Купить на Amazon

Цветовая гамма

Цветовая гамма определяет диапазон цветов , которые может отображать монитор, и определяет его пределы насыщенности. Его часто цитируют в отношении конкретных эталонных цветовых пространств, которые мы вскоре рассмотрим. Собственная гамма дисплея определяется подсветкой или источником света, включая диоды, люминофоры и другие используемые материалы. Сюда входят любые материалы, используемые для «светодиодов» в самоизлучающих дисплеях, таких как OLED. Некоторые модели включают режимы «эмуляции», которые ограничивают гамму определенными цветовыми пространствами, которые соответствуют гамме. Наиболее распространенным является режим эмуляции sRGB, используемый для ограничения широкой гаммы цветовым пространством sRGB. Такие настройки не всегда идеальны, как описано в статье, с общими ограничениями на настройку цветового канала, настройки гаммы и даже яркости. Как отмечено в статье, существуют альтернативы на уровне GPU для графических процессоров AMD и Nvidia, которые обеспечивают эмуляцию sRGB без таких ограничений.

Предпочтительно профилировать монитор с помощью собственного колориметра или аналогичного устройства, используя его полную собственную гамму и разблокировав все экранные элементы управления монитора. Это имеет место независимо от цветового пространства, в котором вы хотите работать. Или даже если вы просто хотите использовать любую гамму, поддерживаемую вашим монитором, которая может располагаться между определенными цветовыми пространствами. Точная заводская калибровка, безусловно, является хорошим началом, и многие рекомендуемые здесь мониторы предлагают ее. Но со временем все может измениться, и поправки, сделанные с помощью вашего собственного колориметра, спектрофотометра или подобного устройства, будут более точными. На изображении ниже показаны некоторые часто используемые цветовые гаммы для редактирования фотографий и видео, что дает вам представление о том, как они соотносятся друг с другом. Красный треугольник — измеряемый монитор, зеленый треугольник — sRGB, фиолетовый треугольник — Adobe RGB, а синий треугольник — DCI-P3.

Сравнение цветовой гаммы

sRGB — это стандартное цветовое пространство, используемое для цифрового контента, включая изображения и видеоконтент SDR (стандартный динамический диапазон), просматриваемый в Интернете. А также игры, играемые под SDR. В то время как дисплеи с более широкой гаммой становятся все более распространенными, sRGB остается наименьшим общим знаменателем и цветовым пространством, которое большинство дисплеев смогут полностью или в основном покрыть. Таким образом, некоторые предпочтут работать в этом цветовом пространстве, будь то редактирование фотографий и видео или разработка игр. Особенно, если контент будет потребляться широкой аудиторией в цифровом виде.

Adobe RGB — это более широкое цветовое пространство, предназначенное для охвата большего количества насыщенных оттенков, которые могут печатать большинство фотопринтеров. Существует значительное расширение за пределы sRGB в зеленой области гаммы и от зеленого до синего края, тогда как чистые красные и синие области совпадают с sRGB. Поэтому существует некоторое расширение за пределы sRGB для областей промежуточных оттенков, таких как голубой, желтый и оранжевый. Это популярный выбор для тех, кто в конечном итоге печатает фотографии или где их творения попадают на другие физические носители. Поскольку эта гамма может охватывать больше насыщенных оттенков, с которыми вы можете столкнуться в реальном мире, некоторые предпочитают использовать это цветовое пространство, даже если они не печатают свою работу. Это может быть особенно актуально для создания контента, ориентированного на «природные сцены» с такими элементами, как пышная листва, небо или тропические океаны. Пока дисплей, используемый для просмотра контента, имеет достаточно широкую гамму, можно наслаждаться этими дополнительными цветами.

DCI-P3 — это альтернативное цветовое пространство, определенное организацией Digital Cinema Initiatives (DCI). Это ближайшая цель, которую имеют в виду разработчики контента HDR (High Dynamic Range). Это действительно промежуточный шаг к гораздо более широкой гамме, Rec. 2020, охват которых на большинстве дисплеев ограничен. Цветовое пространство не такое обширное, как у Adobe RGB для некоторых оттенков зеленого и синего, но обеспечивает большее расширение в областях от зеленого до красного и от синего до красного. В том числе для чистых красных, оранжевых и пурпурных цветов. Он включает в себя широкий спектр более насыщенных оттенков реального мира, которых нет в sRGB. Он также более широко поддерживается, чем Adobe RGB, отчасти потому, что его легче достичь с помощью менее «экзотических» решений для подсветки или источников света. Но также учитывая популярность HDR и аппаратных возможностей, продвигающихся в этом направлении. По этим причинам некоторые пользователи, работающие с видео и изображениями SDR, предпочитают DCI-P3, а не только с контентом HDR.

Консистенция цвета

Несмотря на то, что наличие подходящей цветовой гаммы для вашей работы важно, также важно, чтобы данный оттенок отображался практически одинаково, независимо от его положения на экране. Во всех моделях ЖК-дисплеев, рекомендованных в этом разделе, используются панели типа IPS, которые, как описано в связанной статье, обеспечивают гораздо более высокую согласованность цветов по сравнению с другими типами ЖК-панелей. Панели VA и, кроме того, TN имеют воспринимаемых гамма-сдвига , связанных с ними, поэтому определенный оттенок может выглядеть совершенно по-разному в зависимости от того, где на экране он отображается. Это влияет на кажущуюся 9Яркость 0003 и насыщенность оттенка. В моделях TN воспринимаемая гамма относительно высока дальше по экрану, обеспечивая более глубокий, чем предполагалось, вид с маскировкой темных деталей. И относительно низко внизу экрана, раскрывая непреднамеренные детали для более темных оттенков и снижая насыщенность до многих оттенков, поэтому они кажутся «размытыми». Это показано на изображении ниже. Модели VA показывают ослабление насыщенности и различную степень чрезмерно темных деталей по периферии и чрезмерное маскирование деталей в центре («черное столкновение»). Модели IPS гораздо более стабильны, когда речь идет об уровнях гаммы и насыщенности по всему экрану. Не-ЖК-технологии, такие как OLED, также очень впечатляют в этом отношении.

Стоит отметить, что однородность также может влиять на представление оттенков в разных точках экрана. Гарантий на этот счет нет, даже с относительно дорогими IPS-моделями. Некоторые модели предлагают цифровую настройку компенсации однородности (UC) , которая предназначена для выравнивания яркости и цветовой температуры в разных точках экрана. Регулировки обычно выполняются относительно самой яркой точки экрана. Поскольку некоторые области экрана затемнены цифровым способом и требуются другие настройки, вы можете ожидать потери контрастности при использовании таких настроек. Но преимущества эффективной настройки объединенных коммуникаций могут перевесить это для некоторых пользователей. Также стоит отметить, что со временем все меняется, поэтому наиболее эффективные настройки унифицированных коммуникаций могут быть откалиброваны пользователем, а не просто установлены на заводе. Эта концепция аппаратной калибровки будет рассмотрена в ближайшее время.

Контраст

Наиболее значимой мерой контраста является «статический контраст», определяющий относительную яркость чистого белого и чистого черного. Это область, в которой модели VA относительно сильны , обычно примерно в 3 раза выше, чем у других типов ЖК-панелей. Технология без подсветки, такая как OLED, отличается исключительной прочностью и практически бесконечной статической контрастностью. Другие аспекты, которые следует учитывать, влияющие на воспринимаемый контраст, включают «свечение IPS», дымку или цветение, которое обычно сильнее всего проявляется в углах экрана, особенно в нижних углах при обычном просмотре сидя. Делает вещи ярче и разъедает темные детали. И «свечение VA», которое обычно является более слабой версией этого. В качестве ключевой части того, что в конечном итоге определяет контраст, пиковая яркость (яркость) тоже важно учитывать. Большинство пользователей ориентируются на 100–200 кд/м², и почти все мониторы достигают этого. Но условия освещения или просто чувствительность и предпочтения, безусловно, могут потребовать значений по обе стороны от этого.

В некоторых ЖК-моделях используется локальное затемнение , позволяющее более точно регулировать яркость в различных точках экрана. Улучшение контрастности и потенциальное снижение интенсивности «свечения IPS» и тому подобного. Локальное затемнение — это то, что мы рассмотрим немного больше в отношении HDR в ближайшее время, но аналогичные функции часто можно включить в SDR для рассматриваемых здесь типов экранов. Важность контраста действительно зависит от типа контента, который вы редактируете . Для некоторых очень важно, чтобы тонкие детали в темных областях видео или изображения были четко определены. Но для многих это просто то, что должно быть «достаточно хорошим» и гораздо менее важно, чем точная цветопередача. Всегда есть компромиссы, на которые нужно идти, и это обычно одна из тех областей, когда речь идет о критичном использовании цвета.

Битовая глубина

Битовая глубина или глубина цвета является мерой насколько точно могут отображаться оттенки . Для мониторов это относится к битам на субпиксель или битам на канал — количество вариаций красного, зеленого и синего, которые могут быть выведены. Этого можно достичь различными способами. Наиболее распространенные поддерживаемые битовые глубины: 8 бит (16,7 миллиона цветов) и 10 бит (1,07 миллиарда цветов) . Это может показаться совершенно разными цифрами — это действительно так. Но эффект, который это оказывает на изображение, и насколько важно, что вам требуется 10-битный цвет, более нюансирован, чем вы думаете. Менее экстремальные, чем смехотворно преувеличенные маркетинговые изображения производителя, могут заставить вас поверить. Большая часть контента, который мы потребляем в формате SDR — в формате изображений, видео и игр — ограничена 8-битным форматом. Но это не обязательно означает, что более высокая битовая глубина бесполезна для создателей контента. И хотя многим подойдет 8-битный цвет для редактирования фото и видео, если у вас есть правильный аппаратный и программный рабочий процесс, вы, безусловно, можете использовать 10-битный цвет для своих творений.

Повышенная точность может быть особенно полезна при работе с тонкими градиентами или просто при работе с чрезвычайно тонкими вариациями оттенка. Это может быть особенно важно, если вы работаете в расширенном цветовом пространстве. Где у вас есть гораздо больше возможностей для охвата по сравнению с гораздо более «сжатым» цветовым пространством sRGB. Способ достижения этой битовой глубины варьируется и может включать использование FRC (управление частотой кадров) или временного дизеринга . Когда монитор использует сглаживание этого типа, он быстро переключается между слегка более светлой и более темной версией оттенка, позволяя воспринимать промежуточный оттенок, который он физически не может отобразить. Это особенно характерно для достижения 10-битного цвета, но дизеринг здесь очень точно обрабатывается и включает небольшие изменения яркости оттенка. Тем не менее, некоторые пользователи предпочитают знать, что монитор имеет «истинную» глубину цвета без дизеринга. Это также потенциальная проблема с комфортом просмотра для некоторых пользователей, хотя мы бы поставили это очень низко в нашем списке вещей, о которых следует беспокоиться в этом отношении. Особенно при рассмотрении 8-битного + 2-битного FRC для достижения 10-битного вывода с монитора.

Аппаратная калибровка и LUT

Некоторые мониторы также предлагают повышенный уровень обработки, независимо от битовой глубины, которую они в конечном итоге могут выводить. Мониторы имеют LUT (таблицу поиска) , которая используется для преобразования данных с графического процессора в визуальные данные на экране. Хотя это часто соответствует битовой глубине дисплея, точность иногда повышается на уровне LUT. 10-битный дисплей с 12-битной, 14-битной или более высокой LUT или «3D LUT», которая еще больше повышает точность, не является чем-то необычным для мониторов в этом сегменте. Чтобы сильно упростить вещи, вы можете думать об этом как о дополнительном уровне проверки, который происходит перед отображением изображения. Это также может повысить эффективность калибровки монитора и, в частности, снизить вероятность возникновения таких проблем, как полосатость или нейтральность серого, возникающих при внесении значительных изменений.

Некоторые модели также предлагают LUT с аппаратной адресацией , также известную как аппаратная калибровка . Это позволяет использовать колориметр, спектрофотометр или альтернативное калибровочное устройство для непосредственного профилирования монитора. В отличие от создания профиля ICC, который вносит исправления на уровне графического процессора и программного обеспечения. Многие мониторы, предназначенные для критически важной работы с цветом, такой как редактирование фотографий, включают некоторую степень заводской калибровки. Но со временем все меняется, и могут быть предпочтительнее более жесткие поправки или даже другие цели калибровки. При аппаратной калибровке вы, по сути, создаете предустановку на мониторе с прямой настройкой таких областей, как цветовая гамма. А дополнительные исправления, сделанные по аналогии с некоторыми, часто можно сделать самостоятельно через экранное меню. Таким образом, изменения, сделанные посредством аппаратной калибровки, являются универсальными. Еще одна полезная функция с аппаратной адресацией — регулировка компенсации однородности (UC).

Хорошо настроенная и стабильная гамма также важна, когда речь идет об уровнях детализации темных сцен. Модели IPS обеспечивают наиболее сильную согласованность гаммы , помогая им поддерживать соответствующую детализацию на всем экране для более темного контента. Без смещения сверху (высокая воспринимаемая гамма — маскированные детали) к низу (низкая воспринимаемая гамма — слишком много деталей) сдвиги, наблюдаемые на моделях TN для темных сцен. Или центральная «черная давка», когда темные оттенки слишком легко переходят друг в друга (высокая воспринимаемая гамма), с некоторыми дополнительными непреднамеренными деталями, проявляющимися дальше (низкая воспринимаемая гамма), что типично для моделей VA.

Возможность HDR

HDR (High Dynamic Range) на идеальном мониторе описывает способность одновременно отображать на экране очень яркие светлые оттенки и очень глубокие темные оттенки. Это также предполагает надлежащее использование широкой цветовой гаммы с Rec. 2020 год является долгосрочной целью, а DCI-P3 — более достижимой ближайшей целью. И по крайней мере 10-битная обработка цвета, позволяющая применять гамму с соответствующей точностью, улучшая «разнообразие оттенков» для очень темного и очень яркого контента. Самый распространенный формат 9.0003 HDR10 , который дополнительно уточняется уровнями сертификации VESA DisplayHDR. Все они сосредоточены на 10-битном выходе и включают DisplayHDR 400 , для которого требуется не менее 400 кд/м² пиковой яркости. Но не требует локального затемнения, используется для усиления контраста или особо широкой цветовой гаммы — приближение к sRGB является «приемлемым». DisplayHDR 600 требует локального затемнения для ЖК-дисплеев и повышает требования к минимальной пиковой яркости до 600 кд/м² , а также требуется покрытие 90%+ DCI-P3 .

DisplayHDR 1000 дополнительно повышает требования к пиковой яркости как минимум до 1000 кд/м² и требует более сложного локального затемнения с популярным здесь FALD (Full Array Local Dimming). Уровень DisplayHDR 1400 требует пиковой яркости не менее 1400 кд/м² , требует покрытия 95%+ DCI-P3 и дополнительно ужесточает требования к контрастности; более сложные решения FALD, такие как Mini LED с обычно более чем 512 зонами диммирования. Для экранов OLED пиковая яркость гораздо более ограничена, но основное внимание уделяется исключительной контрастности наряду с соответствующим использованием широкой гаммы. Для таких дисплеев включены отдельные уровни DisplayHDR «True Black» .

Мастеринг видеоконтента в формате HDR, безусловно, может быть привлекательным для создателя контента, особенно если монитор имеет высокий уровень поддержки HDR. Точно так же, как потребители контента стремятся иметь возможность наслаждаться этим контентом в режиме HDR таким образом, чтобы он выглядел более захватывающим и реалистичным. Поскольку большинство моделей в HDR ориентированы на конвейер HDR10, создатели часто предпочитают придерживаться этого. Некоторые мониторы предлагают поддержку альтернативных форматов HDR, таких как Dolby Vision , который включает в себя динамические метаданные , изменяющиеся от сцены к сцене, а не для всего видео. И включает поддержку 12-битного цвета . И специализированные форматы, такие как HLG (Hybrid Log Gamma) или HLG10 , созданные совместно вещательными корпорациями BBC и NHK. В Википедии есть полезная статья, описывающая форматы HDR более подробно. Редактирование фотографий не выполняется в HDR таким образом. Но наличие экрана с аппаратными возможностями для обеспечения убедительных возможностей HDR, безусловно, может также помочь обеспечить превосходный вывод SDR.

Оперативность

При работе со статическими изображениями скорость отклика монитора имеет ограниченное значение. Вы по-прежнему перемещаете мышь по экрану или перетаскиваете различные «инструменты» и другие элементы. Таким образом, высокая частота обновления и высокая скорость отклика пикселей могут быть привлекательными по этой причине. Но, конечно же, его не следует ставить на первое место в вашем списке приоритетов для такого использования. Для видеомонтажа требования в этом отношении не столь однозначны, и это действительно зависит от контента, с которым вы работаете. Большая часть видеоконтента остается с низкой частотой кадров, ~24 – 30 кадров в секунду . Требования к отклику пикселей для оптимальной производительности здесь относительно низкие, и вы можете использовать относительно «медленный» монитор, который практически не повлияет на вашу работу. 60 кадров в секунду обычно является верхним пределом для видеоконтента, поэтому выход за пределы 60 Гц не требуется . Может быть нишевое требование для более высокой частоты обновления, например, 120 Гц для соответствия содержимому со скоростью 120 кадров в секунду. Но по большей части преимущество в увеличении частоты обновления будет таким же, как и при редактировании фотографий. Сделайте процесс редактирования более «гибким», не затрагивая непосредственно сам контент. Все модели, перечисленные в этом разделе, будут грамотно работать с контентом со скоростью 60 кадров в секунду, с незначительными недостатками, если таковые имеются. Ничего, что действительно должно мешать вашей работе, когда монитор настроен на соответствующую настройку перегрузки пикселей.

Заключение и рекомендации

Рабочий процесс у всех разный, в то время как бюджет и личные предпочтения делают одни модели более подходящими, чем другие. Мы надеемся, что это руководство вооружило вас знаниями, необходимыми для принятия обоснованного решения при покупке монитора для критически важных целей с цветопередачей. Но чтобы помочь вам в этом, у нас также есть специальный раздел рекомендаций по редактированию фото и видео, посвященный некоторым из лучших моделей для таких целей. Мы часто запрашиваем отзывы о таких моделях и пересматриваем модели, которые считаем достойными самого тщательного рассмотрения.

Как партнер Amazon я зарабатываю на соответствующих покупках, сделанных по ссылке ниже. По возможности вас перенаправят в ближайший магазин. Дополнительная информация о поддержке нашей работы.

Купить на Amazon

 

Пожертвования также приветствуются.

Палитра Master Element | Программное обеспечение монитора BenQ

Основной элемент палитры | Программное обеспечение для мониторов BenQ | BenQ США

Мы используем файлы cookie и аналогичные технологии для обработки личной информации для работы нашего веб-сайта, статистического анализа и предоставления целевой рекламы. Мы передаем информацию об использовании вами сайта нашим рекламным партнерам, которые могут в дальнейшем передавать ее другим сторонам. Вы можете отказаться от эксплуатационных файлов cookie здесь и узнать больше о том, как мы используем файлы cookie 9.0244 сюда » 

Настройка файлов cookie Найти больше

Найдите идеальные подарки на День святого Валентина для любимых

Купить сейчас

Найдите идеальные подарки на День святого Валентина для своих любимых

Купить сейчас

Получите бесплатную видеоигру при покупке игрового проектора X3000i!

Получите бесплатную игру!

Получите бесплатную видеоигру при покупке игрового проектора X3000i!

Получите бесплатную игру!

Палитра Master Element

  • Обзор
  • Спецификация
  • Часто задаваемые вопросы

Базовый режим для начинающих

Начните с правильного профиля по умолчанию, точки белого и яркости для калибровки монитора. Легко добиться точности цветопередачи с помощью простого пользовательского интерфейса.

Расширенный режим для профессиональных пользователей

Профессиональная калибровка цвета дополняется настраиваемыми основными параметрами RGB, точкой белого, яркостью, гаммой и точкой черного для более точных настроек.

Узнайте, как выполнить аппаратную калибровку с помощью BenQ Ambassador

Взгляните на представителя BenQ Art Suwansang, чтобы продемонстрировать, как выполнять аппаратную калибровку с помощью Palette Master Element. После того, как вы узнали о преимуществах того, как BenQ Palette Master Element может помочь в аппаратной калибровке ваших мониторов.

Часто задаваемые вопросы

Есть вопрос?

Получить ответПодробнее

Загрузить

Найти последнюю версию руководства пользователя

Перейти ЗагрузитьПодробнее

В чем разница между Palette Master Ultimate (PMU) и Palette Master Element (PME)?

Palette Master Ultimate (PMU), программное обеспечение для калибровки собственной разработки BenQ, работает с моделями PhotoVue, выпущенными после 2019 года. . Это позволяет пользователям более гибко настраивать параметры цвета и настраивать параметры калибровки. Узнайте больше о PMU здесь:

Узнайте больше

  • Что такое аппаратная калибровка и чем она может мне помочь?

    Аппаратная калибровка регулирует цвета посредством прямых изменений обработки монитора для получения точных цветов. Нажмите и следуйте приведенным ниже инструкциям или читайте дальше, чтобы узнать больше об этой теме.

    Узнать больше

  • org/Question»>

    Что мне нужно для калибровки монитора?

    Требуются калибраторы

    , такие как X-Rite i1 Display Pro и Datacolor Spyder X. И загрузите программное обеспечение BenQ Palette Master Element с нашего официального сайта.

    Узнать больше

  • Как часто следует калибровать монитор?

    Мы рекомендуем клиентам калибровать мониторы каждые две недели или максимум раз в месяц для достижения наилучших результатов.

    Узнать больше

  • org/Question»>

    Могу ли я установить и использовать стороннее программное обеспечение для калибровки?

    Программную калибровку можно использовать с профилировщиком X-Rite i1 и другими приложениями. Только Lightspace и CalMAN поддерживают полный доступ для настройки свойств цвета монитора.

    Узнать больше

  • Нужно ли калибровать монитор перед использованием?

    Благодаря оптимизированной заводской калибровке вы сразу же получаете лучший монитор для работы с критически важными цветами с многочисленными предустановленными стандартными отраслевыми режимами. Тем не менее, мы по-прежнему рекомендуем вам вручную калибровать монитор не реже одного раза в месяц, чтобы сохранить этот уровень точности.

    Узнать больше

  • Что такое аппаратная калибровка и чем она может мне помочь?

    Аппаратная калибровка регулирует цвета посредством прямых изменений обработки монитора для получения точных цветов. Нажмите и следуйте приведенным ниже инструкциям или читайте дальше, чтобы узнать больше об этой теме.

    Узнать больше

  • org/Question»>

    Нужно ли калибровать мой монитор перед использованием?

    Благодаря оптимизированной заводской калибровке вы сразу же получаете лучший монитор для работы с критически важными цветами с многочисленными предустановленными стандартными отраслевыми режимами. Нажмите и следуйте приведенным ниже инструкциям или читайте дальше, чтобы узнать больше об этой теме.

    Узнать больше

  • Как узнать, совместим ли мой монитор/программное обеспечение с M1?

    Нажмите и следуйте приведенным ниже инструкциям или читайте дальше, чтобы узнать больше об этой теме.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *