Разное

Аппаратное разрешение это: Аппаратное (оптическое) разрешение

Содержание

НОУ ИНТУИТ | Лекция | Получение цифровых изображений сканированием. Создание газеты

Аннотация: Эта лекция посвящена сканированию — одному из основных способов получения цифровых изображений для DTP. Задача сканирования заключается в наиболее полном считывании информации с оригинала. При этом желательно по мере необходимости скорректировать недостатки оригинала с точки зрения его последующего использования изображения (например, компенсировать нежелательный цветовой сдвиг). Известно, что в компьютере растровое изображение представлено в виде точечных элементов (пикселей), в то время как векторные изображения составлены из кривых, закодированных математическими формулами. Здесь нас будет интересовать, главным образом, растровая графика, так как именно такие графические файлы мы получаем со сканера.

Ключевые слова: сканер, RGB, RED, Green, blue, бит, печатающее устройство, полиграфия, планшетный сканер, DPI, электрический сигнал, CCD, charge-coupled device, inch, Разрешение сканера, уровень детализации, lpi, ppi, SPI, optical density, шкала измерений, small office, hifi, PCX, WMF, LZW, высота, место, логотип, векторный редактор, нижний колонтитул, нумерация, фрейм, меню, шрифт, pt, word, выходные данные, диск, EPS, PDF, файл, encapsulation, portable document, format, поле

Основы цветоведения для сканирования

intuit.ru/2010/edi»>Все растровые изображения условно можно подразделить на три вида:

  1. однобитное изображение (bitmap),
  2. полутоновое однобитное изображение (grayscale),
  3. цветное изображение (color).

При работе с цветным изображением сканер использует процессы, основанные на передаче трех основных составляющих любого изображения — красной, зеленой, синей (RGB — red, green, blue) и отраженный оригиналом свет воспринимается сканером как комбинация этих трех цветов в некотором процентном соотношении. В зависимости от типа сканера изображение может быть передано в цвете как 24-битное 42-битное или 48-битное. Количество бит определяет число оттенков цвета. Например, 24-битное изображение передает 16,7 млн. оттенков — столько, сколько видит глаз человека.

Определение цвета в моделях RGB и CMYK

intuit.ru/2010/edi»>Сканирование, редактирование и цифровой вывод невозможны без описания цвета в точных универсальных терминах с помощью цветовых моделей. Сегодня работу с растровыми изображениями трудно себе представить без программы Adobe Photoshop. На рис. 9.1 изображение натюрморта с виноградом в цветовой модели RGB разбито на три канала: красную, зеленую и синюю составляющие. Их сумма и даст нам итоговую полноцветную картинку (составное цветное RGB изображение).

Рис. 9.1. Цветное изображение RGB и составляющие его каналы Red, Green, Blue на палитре Channels (Каналы) в программе Adobe Photoshop

Если в программе Adobe Photoshop вы инструментом

Eyedropper Tool (Пипетка) щелкните на каком либо участке цветного изображения, то цветовая палитра Color Picker тут же отобразит цифровое значение выбранного цвета в цветовой модели RGB ( рис. 9.2).

Рис. 9.2. Пипеткой указан цвет R=241. G=191, B=93

Модель CMYK более актуальна для описания цвета не при сканировании (вводе цветного изображения), а при его выводе на печать. Когда составное цветное изображение готовиться для печати в CMYK, его можно разбить на голубую (Cyan), пурпурную (Magenta), желтую (Yellow) и черную (Black) составляющие. Распределение цветов по этим каналам зависит от печатающего устройства, типа бумаги и параметров краски для печати. Человеческий глаз видит гораздо больше цветов, чем может воспроизвести сканер, монитор или принтер. Узость цветового охвата модели CMYK — одна из основных проблем полиграфии.

От чего зависит качество сканирования?

Планшетный сканер является наиболее универсальным инструментом, подходящим под большинство задач. Модели авторитетных производителей неприхотливы и надежны, просты в установке и использовании, а разнообразие выпускаемых модификаций позволяет подобрать сканер практически под любые требования. В настоящее время, планшетные сканеры по качеству воспроизводимого изображения достигли уровня барабанных моделей среднего класса и вплотную приблизились к профессиональным: разрешение планшетных сканеров доходит до 3000 dpi, разрядность цвета — до 48 bit, динамический диапазон D — до 3.6 (что это за характеристики — поговорим ниже). В ручных, планшетных и слайдовых сканерах изображение сканируется построчно: строка оригинала освещается специальной лампой, обычно газоразрядной, отраженный непрозрачным или пропущенный прозрачным оригиналом световой поток при помощи системы зеркал и объектива фокусируется на светочувствительной матрице, которая делает «фотоснимок» строки и выдаёт электрический сигнал на Аналогово-Цифровой Преобразователь (АЦП), где снимок строки преобразуется в двоичные данные, понятные компьютеру. Последовательность таких «снимков», производимых по мере движения вдоль оригинала, и создает изображение. Лампа, оптическая система и светочувствительная матрица объединены в единую конструкцию, называемую оптическим блоком.

В зависимости от конструкции сканера, оптический блок может быть неподвижным, когда оригинал, по мере сканирования, перемещается вдоль матрицы, либо подвижным и перемещаться вдоль оригинала. В качестве светочувствительного элемента используются матрицы ПЗС (Приборы с Зарядовой Связью), что по-английски — CCD (Charge-Coupled Device), которые состоят из набора датчиков, расположенных в одну линию для черно-белого сканирования или трехпроходного цветного, либо в три линии для сканирования в цвете (RGB) за один проход. Разобраться в конструкции сканера хотя бы в самом общем виде необходимо для того, чтобы понять от чего будет зависеть качество сканирования. Конструкция планшетного сканера изображена на рис. 9.3.

Рис. 9.3. Конструкция планшетного сканера

Источник света (а) отражает свет от оригинала (b). Зеркала (с) передают отраженный свет на линзу (d), которая фокусирует информацию изображения на кристаллы ПЗС (е), содержащие одну или три строки датчиков (изображены черными прямоугольниками).

ПЗС регистрирует свет как изменение аналогового заряда, который затем направляется на АЦП (f) для преобразования в цифровые данные, которые будут выведены на экран монитора.

Технические характеристики сканеров

Разрешение сканирования

Разрешение сканирования (scanning resolution) является основной характеристикой сканера и указывает, сколько пикселов изображения может вводить сканер на единицу площади оригинала. С увеличением разрешения возрастает четкость и детальность получаемого со сканера изображения. Разрешение сканирования измеряется в пикселях на дюйм (Dots Per Inch), сокращенно — DPI. К примеру, разрешение 600 x 600dpi обозначает, что квадратный дюйм изображения будет содержать 600 пикселов по вертикали и 600 по горизонтали, т.е. 360.000 пикселов. Разрешение изображения при сканировании находится в прямой зависимости от количества содержащихся в матрице ПЗС светочувствительных элементов, что накладывает существенные ограничения на увеличение разрешения аппаратным путем, потому что для этого приходится уменьшать размеры датчиков и как можно плотнее «паковать» их на линейке матрицы, что приводит к взаимным искажениям сигнала от соседних датчиков и, вследствие этого, нарушениям четкости и цветопередачи.

Такое аппаратное разрешение, определяемое его конструктивными возможностями, называют иначе оптическим разрешением сканера.

Оптическое разрешение — очень важная характеристика для любого сканера. Для современных устройств эта величина составляет не менее 600 dpi. Для профессиональных планшетных сканеров оптическое разрешение составляет не менее 1200 dpi, а для слайд-сканеров — от 1800-2400 dpi и выше.

Новый термин

Оптическое (аппаратное) разрешение сканера

— это реальное количество пикселов, которое в состоянии «разглядеть» светочувствительная матрица сканера и его можно легко вычислить, разделив количество элементов матрицы на ширину области отображения. Производители качественной техники, как правило, указывают количество элементов матрицы в спецификации сканера.

Наряду с оптическим (аппаратным, реальным) разрешением в спецификации сканера указывается его интерполяционное (программное) разрешение. Интерполяция это способ изменения разрешения посредством специальной программы. При уменьшении разрешения лишние данные отбрасываются, а при увеличении — программа их добавляет. Таким образом, интерполяция искусственно добавляет (или удаляет) элементы цифрового изображения.

Новый термин

Интерполяция представляет собой программный алгоритм, принцип работы которого основан на вычислении характеристик точки изображения на основе ближайших точек-соседей (Например, между черной и белой точкой изображения, будет вставлена серая). Понятно, что такое «угадывание» не добавляет реальных деталей к изображению и всегда «размывает» изображение, уменьшая его четкость.

Следует быть внимательным при изучении спецификации сканера и отличать реальное оптическое разрешение сканера от интерполяционного, программного разрешения (interpolating resolution). Если в спецификации сканера указано разрешение, например 1200/24000 dpi, то реальное разрешение сканера — 1200 dpi, а 24000 dpi — результат работы специальной программы. Иногда вы в паспорте сканера можете столкнуться с такой записью: оптическое разрешение 1200 x 2400 dpi. В этом случае 1200 dpi —

горизонтальное, а 2400 dpi — вертикальное разрешение сканера. Дело в том, что двигаясь вдоль оригинала, линейка матрицы делает сотни «фотоснимков» строки оригинала, на основе которых формируется целое изображение. Ничто не мешает делать такие «снимки» с шагом, меньшим шага матрицы получая, таким образом, изображение, содержащее по вертикали вдвое больше пикселов, нежели по горизонтали. Такое аппаратное интерполирование по вертикали позволяет получить в результате разрешение, вдвое превышающее реальные возможности матрицы. С этим методом связано то, что в спецификациях сканеров очень часто указываемое вертикальное разрешение превышает горизонтальное в два раза, например, 300 x 600 или 600 x 1200 dpi. Здесь, как и во всех случаях интерполяции указано математическое разрешение, которое может увеличить продажи, но отнюдь не качество. Существует всего один реальный показатель разрешения — истинное или оптическое разрешение, как правило, это меньшая из указанных в рекламе цифр.
Так, например, сканер ColorPage-HR7 имеет оптическое горизонтальное и вертикальное разрешение 1200 и 2400 dpi соответственно, а программное интерполяционное разрешение этой модели достигает 24.000 x 24.000 dpi.

DPI сканера и LPI принтера

Итак, разрешение определяет уровень детализации объекта при сканировании и определяется в точках на дюйм (dpi). Чем выше этот показатель, тем более детально будет передан объект, но тем больше будет и размер выходного файла. Показатели разрешения сканера и принтера указываются в одних и тех же dpi, из-за чего возникает путаница. Для того, чтобы разобраться в этом, давайте представим цветовые точки, полученные со сканера и струйного принтера.

Точка сканера (dpi, lppi, ppi) — это некая физическая область (прямоугольный пиксел), равномерно окрашенная определенным оттенком цвета. Если мы говорим о полноцветном сканировании, это один из 16,7 млн. тонов, которые передает сканер. Оптическое разрешение сканера указывает, сколько пикселов сканер может сосчитать в квадратном дюйме (600, 1200 и т.д.).

Точка цветного принтера (lpi) — это совокупность нескольких, в зависимости от способа печати, цветовых пятен, которые, сливаясь на бумаге или в нашем глазу, дают ощущение одного из цветовых оттенков.

Предположим, что в струйной технологии печати точкой, указанной как разрешение, является цветовое пятно одного из цветов, имеющихся в картридже. Но, по сути, не совокупностью ли трех пятен, дающих оттенок цвета, следует считать на самом деле такую точку? Если приведенные выводы верны, то показатель разрешения принтера в dpi следует разделить на количество цветов, которые используются при печати. Следовательно, рассуждая теоретически, если показатель струйного принтера, печатающего в три цвета, равен 300 dpi, то соответствующий показатель сканера равен 300/3=100 dpi. Если вы располагаете струйным принтером с разрешением 600dpi с печатью в четыре цвета, то сканировать нужно с разрешением 600/4=150 dpi. На рис. 9.4 приведет пример того, как пространственная частота растра (число точек на дюйм) определяет количество мелких деталей в напечатанном изображении:

Рис. 9.4. Влияние LPI на качество печатного изображения

Таким образом, отпечатанные изображения имеют собственные показатели разрешения, измеряемые в линиях на дюйм (lpi). Эти показатели отличаются от показателей электронного изображения в точках на дюйм (dpi).

С каким разрешением сканировать?

Для того, чтобы определить с каким разрешением следует сканировать изображение, существует выведенное эмпирически путем правило: для определения требуемого разрешения при сканирования выясните, какой показатель lpi у выходного устройства (принтера), и умножьте его на 2. Вы получите оптимальный показатель в точках на дюйм (dpi), необходимый для наилучшей передачи изображения. Так, при высококачественной полиграфической печати, параметр lpi обычно равен 133. Следовательно, при сканировании необходимо разрешение 133 x 2 = 266 dpi. Можно, конечно, отсканировать изображение и с большим разрешением. Однако из-за ограничения полиграфического показателя lpi при печати вы не добьетесь большего качества, а лишь увеличите размер файла. Самые роскошные полиграфические издания печатаются с lpi не выше 300. Поэтому для них вполне достаточно сканирования при 600 dpi. При печати газет параметр lpi равен 85. Следовательно, для газетного макета вполне достаточно разрешения сканирования 170 dpi.

Если вы сканируете изображение для того, чтобы смотреть на него на мониторе, достаточно всего 72 dpi. В большинстве мультимедийных программ и рисунков для WWW изображения отсканированы именно с таким разрешением.

Замечание

Термин разрешение тесно связан с другим термином — размер изображения, который определяет физическую длину и ширину изображения. В специальной литературе, связанной с компьютерной графикой, терминология по этому вопросу не однозначна. В зависимости от устройства, на котором выводится изображение, возможно использование следующих единиц измерения разрешения: spi (sample per inch) — элементов на дюйм; dpi (dot per inch) — точек на дюйм; ppi (pixel per inch) — пиксел на дюйм; lpi (Line per inch) — линий на дюйм.

Оптическое (аппаратное) разрешение сканера измеряется в ppi (pixels per inch) — пикселях на дюйм. Хотя с физической точки зрения правильнее было использовать spi (samples per inch) — элементы (или дискреты) на дюйм. Однако, как уже отмечалось, реальность такова, что на практике и в литературе более распространен термин dpi — точки на дюйм. Поэтому, чтобы в дальнейшем избежать терминологической путаницы, при работе со сканером будем считать единицы измерения разрешения ppi и dpi синонимами.

Глубина цвета

intuit.ru/2010/edi»>Разрядность обработки цвета, еще называемая глубиной цвета (color depth) описывает максимальное количество цветов, которое может воспроизвести сканер. Этот параметр обычно выражается в битах на цвет или в битах на цветовой канал. Вычислить количество воспроизводимых цветов просто — достаточно возвести двойку в степень разрядности цвета сканера, либо, если разрядность представлена в битах на канал, возвести двойку в степень разрядности цвета в канале и полученное значение возвести в куб. Например, количество цветов, воспроизводимых 24х-битным сканером (8 бит на канал) равно 256 в кубе, т.е. 16 777 216 (16,7 млн. цветов).

Разрядность битового представления цвета (глубина цвета), выбранная для сканирования, влияет как на размер файла, так и на уровень серого в сканированном изображении: размер файла прямо пропорционален глубине цвета, а уровень серого в сканированном изображении увеличивается в экспоненциальной зависимости от разрядности (рис. 9.5).

Рис. 9.5_1. Изображение в режиме RGB 24bit (3 канала по 8 бит на канал) — файл 1,15Мб

Рис. 9.5_2. Изображение в режиме Grayscale 8bit (1 канал 8 бит) — файл 390Кб

Динамический диапазон сканера (D) и оптическая плотность оригинала (OD)

Важной характеристикой любого оригинала для сканирования является его оптическая плотность, определяющаяся способностью оригинала отражать или пропускать свет. Оптическая плотность лежит в пределах от 0, что соответствует белому цвету, до 4, что соответствует черному цвету и обозначается OD (Optical Density) или просто D (Последнее вводит путаницу в термины и оптическую плотность оригинала пользователи начинают путать с динамическим диапазоном сканера).

Новый термин

Оптическая плотность характеризует черноту (непрозрачность) каждой точки оригинала. Она пропорциональна десятичному логарифму отношения интенсивности света, падающего на оригинал, к интенсивности света, отраженного от оригинала (или прошедшему насквозь в случае пленок). Согласно принятой логарифмической шкале измерения значение 0.0 D соответствует идеально белому (или абсолютно прозрачному) оригиналу, 4.0 D — абсолютно черному (или непрозрачному) оригиналу.

Типичные значения оптической плотности различных оригиналов:

  • OD=0.9 бумага газетная,
  • OD=1.5-1.9 бумага мелованная,
  • OD=2.4-2.7 фотопозитивы,
  • OD=2.6-2.8 фотонегативы,
  • OD=2. 8-2.9 для любительских слайдов,
  • OD=3.0 — 4.0 цветные слайды коммерческого (профессионального) качества.

С оптической плотностью оригинала перекликается термин «динамический диапазон оригинала и сканера».

Новый термин

Динамический диапазон (Dynamic Range) или Диапазон плотности (Density Range) оригинала определяется как разница между самым светлым (Dmin) и самым темным (Dmax) участками оригинала и зависит от типа оригинала и его происхождения. Применительно к сканеру, динамический диапазон определяется как разница между самым светлым (Dmin) и самым темным (Dmax) участками оригинала, которые сканер в состоянии обработать.

Итак, D — разница между максимальной и минимальной оптическими плотностями, различаемыми сканером, т.е. динамический диапазон сканера, характеризует его способность различать близкие по тону оттенки. Разные производители указывают данную характеристику по-своему. Одни пишут величину динамического диапазона, а другие — максимальной оптической плотности. На самом деле эти параметры сканера связаны напрямую. Так, для сканера с динамическим диапазоном от 0,1 до 3,4 значение максимальной оптической плотности будет 3,4 D, а величина самого диапазона 3,4-0,1=3,3 D. Однако ясно, что если оригинал имеет распределение оптических плотностей 0,7 — 4,0 D, то сканер не различит детали, соответствующие плотностям 3,3 — 4,0, хотя диапазон оптических плотностей оригинала и равен динамическому диапазону сканера. Кроме того, разные фирмы вычисляют динамический диапазон своих сканеров по-разному, а некоторые просто указывают теоретически возможный предел (он определяется разрядностью CCD-матрицы сканера и зачастую превышает реальные возможности аппаратуры).

Замечание

Параметр Динамический диапазон (Dynamic Range) для непрофессиональной техники класса SOHO (Small Office, Home Office), не рассматривается как существенный. Поэтому многие производители не указывают его в паспорте бытового (домашнего) сканера.

Производители качественной техники, указывают значения Dmin и Dmax в спецификации сканера. С увеличением динамического диапазона сканера возрастает количество вводимых градаций яркости и, следовательно, плавность переходов в смежных тонах изображения. Для сканеров с D=3,0 и D=3,6 градации яркости по шкале «черно-белое» отличаются в четыре раза: для первого значения их число пропорционально 1000, а для второго — 4000. Неудивительно, что и цена двух таких устройств может различаться в разы. Недостаточный динамический диапазон сканера (рис. 9.6) ведет к неизбежным потерям деталей, причем преимущественно в наиболее оптически-плотных областях, а также к появлению шума в светах и тенях изображения, и к более резким тоновым переходам.

Рис. 9. 6_1. Изображение неба, отсканированное со слайда на сканере с низким показателем динамического диапазона

Рис. 9.6_2. Изображение, отсканированное со слайда на сканере с высоким показателем динамического диапазона

Типичные значения динамического диапазона для устройства ввода изображения:

4.D=2,0-2, 2 Ручные сканеры,
5.D=2, 0-2, 5 Дешевые цветные планшетные сканеры,
6.D=2, 8-3, 2 Цветные планшетные сканеры класса SOHO,
7.D=3, 4-3, 9 Цветные планшетные сканеры HiFi (высокого класса),
8.D=3, 4-4, 0 Барабанные сканеры, настольные,
9.D=3, 6-4, 0 Барабанные сканеры высокого класса.

Разрядность обработки цвета и динамический диапазон находятся в прямой связи друг с другом: динамический диапазон возрастает с увеличением разрядности цвета. Это объяснимо тем, что чем выше разрядность сканера, тем выше детализация вводимого сканером изображения. Для 24-битного цветного офисного сканера показатель оптической плотности обычно 2.4 — 2.6. Для сканера 42-бит этот показатель 2.6 и 3.0. Для модели 48-бит — от 3.0 и выше.

Что такое Разрешение. Что такое пиксель.Что такое SPI PPI DPI

Что такое Разрешающая способность

Объяснение термина “разрешающая способность”(далее по тексту «разрешение») — подобно попытке объяснить метрическую систему кому-то выросшему на дюймах и футах. Если Вы не програмист, а информатику в школе Вы «прошли мимо», разобраться с данном вопросе будет очень не просто.

Прежде чем мы займёмся «Разрешением» необходимо выяснить — Что такое пиксель.
Пиксель — это элементарный модуль изображения находящегося в цифровом виде, не имеющий собственного линейного размера. Слово «Пиксель» это сокращение от picture element (элемент изображения). «Файлы цифровых изображений» (не путать с форматом файла) состоят из рядов пикселей, заполняющих высоту файла, таким образом создается двухмерное цифровое изображение с размерностью px*px. Увидеть пиксель нельзя, можно увидеть только отображение информации пикселя устройством вывода. Если открыть в Adobe Photoshop вашу любимую картинку, и увеличить масштаб представления до 1600% вы увидите квадратные участки одного цвета, каждый из них сформирован видеокартой компьютера исходя из информации одного пикселя. При масштабе просмотра 100% — информация каждого пикселя используется для формирования цвета на минимально возможном участке экрана монитора (размер этого участка зависит от выбранной размерности монитора в драйвере видиокарты- так называемое «разрешение монитора» ) эти точки создают мозаику, которая сливается в непрерывный тон. Пиксель — это не изображение — это информация о изображении. Формат цифровых значений, пикселя зависят от модели представления цвета (bitmap, Grayscale, RGB, CMYK, Lab, LCH, и др.), разрядности (глубины) данных (1 бит, 8 бит, 16 бит, 32 бита). Например для битовой карты это -или 0 или 1, для CMYK — информация представляет собой четыре цифры и каждая цифра может принимать значения от 0 до 100 (процент краски). Визуализацию этих значений производят драйверы устройств вывода.
В повседневной жизни пикселем называют всё достаточно «мелкое», которое формирует «нечто целое», например точки печати или, что гораздо чаще — точки изображения на экране монитора, но как только заходит речь о Разрешении такая вольность в отношении единицы информации изображения — пиксель, не допустима. Пиксель можно представить себе, например как на рисунке ниже: «нечто», несущее информацию о изображении в цифровом виде. 🙂

 Еще одна аналогия — таблица Excel, ячейки которой заполнены цифрами, одним числом в случае изображения в градациях серого, три числа будет содержать ячейка в случае RGB изображения, в коментарии такая таблица обязана содержать информацию о цветовом профиле, «глубине» цвета (разрядность данных -бит) — это позволит визуализировать информацию таблицы на мониторе, в коментарии так же нужна информация о разрешении — это позволит распечатать информацию.

 Осознание пастулата: Пиксель — это не изображение — это информация о изображении здорово поможет в освоении приемов коррекции изображения — все манипуляции с цифровым изображением производятся над инфомацией о изображении, а не с цветом и тоном изображения.

Единицы измерения разрешения:

Разрешающая способность сканера измеряется в выборках на дюйм ( spi )
Разрешение цифровых изображений, измеряется в полученных или предназначеных для вывода пикселях на дюйм ( ppi )
Разрешающая способность устройства вывода — в точках на дюйм ( dpi ).
Многие путают эти единицы измерения. Сканер и цифровые камеры создают пиксели, не точки. Однако, пиксели в конечном счете будут определять значения точек на выводе. Tочка на выводном устройстве может быть создана исходя из информации:
-каждого пикселя;
группы пикселей
-или группа точек создана из группы пикселей.


Например, если изображение имеет длину 300 пикселей и выводится на принтере, разрешение печати которого 300 точек на дюйм (dpi), то на печати длина изображения будет равна одному дюйму, потому что одна точка была создана исходя из информации, которую несёт один пиксель. Возникает следующий вопрос :- » Насколько велика точка печати? » Для устройства печати, способного напечатать 300 точек на дюйм, каждая точка — 1/300 дюйма (0,0846мм). (например цифровая фотопечать в минилабе). Если Вы печатаете файл, у которого сторона имеет 3000 пикселей, на таком устройстве печати, то один дюйм напечатанного изображения будет появляться на выводе для каждой группы из 300 пикселей в файле. Размер отпечатка будет 10 дюймов. Если Вы выводите тот же самый файл для получения слайда, используя устройство записи на фотопленку с разрешающей способностью 1000 точек на дюйм, каждая точка — 1/1000 дюйма (0,0254 мм). С 3000 пикселями в файле, устройство записи на фотопленку произведет один дюйм изображения на слайде для каждой группы в 1000 пикселей. размер отпечатка будет три дюйма. В обоих случаях, есть 3000 пикселей в файле, но на одном устройстве вывода изображение длинной 10 дюймов, а на другом только 3 дюйма. В этой ситуации, устройство записи на фотопленку имеет более высокую разрешающую способность, чем принтер. Цифровые изображения не имеют конкретной физической линейной длинны и ширины.
Привыкайте оценивать величину цифрового изображения по размеру файла в МегаБайтах. Как велико изображение RGB, имеющее 2000 x 3000 пикселя? -в формате файла, не использующего сжатие, на жестком диске оно занимает 17,2 МБ? Какие оно имеет линейные размеры? Вопрос не имеет ответа, пока неизвестно устройство вывода. Создайте новое изображение в Photoshop, задав указаное количество пикселей, Программа позволит Вам при этом, выставить значение в поле Разрешение до 9999 ppi, созданные с разным разрешением файлы будут равноценными по качеству и количеству информации.

Опять вернемся к нашей таблице Excel — мы можем отправить на печать 10 рядов ячеек на страницу или 30 рядов, или 300 (своя рука владыка). Если 10 ячеек на странице смотряться «рыхло» — цифра от цифры далековато и мы можем сказать, что на единицу площади информации мало. В случае печати 300 рядов ячеек на страницу — информации на единицу площади слишком много — мы элементарно не сможем прочитать содержимое — информации избыточно много. А вот 30 рядов ячеек то, что надо, информация складывается в изображение, например такое:.
Плохо, и недостаток, и избыток информации. Но это «плохо» только на печати, пока цифровое изображение в компьютере тег «разрешение» (значение количества пикселей на единицу длинны, которые мы выделяем для печати изображения) качество изображения никак не характеризует.

Никакой демократии

Качество Вывода зависит от качества информации, которую несут пиксели в файле. Для примера: барабанный сканер с максимальной разрешающей способностью 19000 spi может легко отсканировать оригинал с разрешением сканирования 300 spi и он точно соответствовал бы размеру и разрешению сканирования 300spi планшетного сканера за 100 $; однако, различие в качестве огромно. То же можно сказать и о пикселях с цифрых фотоаппаратов разного класса. Даже если одно устройство способно получать большее количество пикселей с дюйма оригинала, чем другое, это не говорит о том, что качество будет выше. Это — особенно касается цифровых камер. Большинство людей, приобретающих цифровые фотоаппараты, критерием выбора для себя определяют количество элементов в матрице камеры и не обращают внимание на другие аспекты, влияющие на качество. Много факторов, которые затрагивают качество: ПЗС и его уровень шума, аналого-цифровой преобразователь, оптика, и форматы сохранения файла — все это влияет на качество получаемого изображения. Например в настоящее время разрешающая способность существующей оптики в существенной мере сдерживает развитие цифровой фотографии.

(Ещё о качестве изображения).

Рассмотрим небольшое упражнение, иллюстрирующее взаимозависимость размера изображения от разрешения устройства вывода:

  • Запускаем Photoshop.
  • Создаем новый файл, выбирая New в меню File (Cmd/Ctrl N).
  •  В всплывающем окне, назовите файл » Испытание Разрешающей способности»
  • Обратите внимание на поля Width и Height. Вы можете определить, в каких единицах работать — в пикселях, дюймах, и т.д. В меню, выберите пиксели, и введите 400 в поле ширины и 500 в поле высоты. Установите в поле Resolution 72 pixels inch.
  • Выберете режим в раскрывающемся меню Mode — Grayscale (возможно создать файл CMYK, RGB, или Grayscale). Позже, Вы уведите, что размер файла в каждом из этих цветовых пространств разный.
  • Список Background Contents позволяют Вам устанавливать цвет фона в новом документе. Оставьте его белым (White).
  • Щелкаем кнопкой OK.

Выберите команду Image Size из меню Image. Каков фактический размер в дюймах? Этот диалог заявляет, что «размер» — 5.556×6.944 дюйма. Если Вы математик, то 400 разделить на 72 равняется 5.556, и 500 разделить на 72 равняется 6.944. Photoshop вычислил за Вас — на основании разрешения и количества имеющихся пикселей — установил линейные размеры этого файла. Другими словами, если бы Вы выводили этот файл (400×500- пикселя) на устройство вывода с разрешающей способностью 72 точки на дюйм, размер был бы 5.556×6.994 дюйма или 14,11х17,64 см.

Но для печати, например, на принтере надо выделить 300 пикселей для формирования одного дюйма изображения.
Снимите галочку Resample Image, что бы не изменять колличество пикселей в файле и введите в поле Resolution 300. Линейные размеры будут пересчитаны исходя из нового разрешения — 1,333х1,667 дюйма (3,39х4,23см). При этом качество изображения осталось неизменно. Если Вы хотите напечать старые линейные размеры, но с разрешением печати 300dpi придёться поставить галочку Resamle Image и выставить желаемое разрешение (количество пикселей, которое Вы выделяете для печати дюйма изображения) при этом увеличится количество пикселей (1667х2083px) — происходит интерполяция изображения — конечно, ничего хорошего на печати не получится — ни один алгоритм интерполяции не добавляет информации в сюжет — происходит «растягивание» того, что есть, чуть подробнее о интерполяции ниже. Т.е качество изображения ухудшилось. Судить о качестве цифрового изображения можно только в контексте условий вывода.

Взаимозависимость размера и разрешения

Поскольку файлы не имеют ширины или высоты, пока они не выведены, они имеют комплекс из трёх взоимозависимых характеристик (px * px = inch / ppi). Информация о линейных размерах необходима для быстрой оценки соответствия файла изображения размерам иллюстрации заложеных в программах вёрстки (линейным размерам на будующем отпечатке). Разрешение цифрового изображения — это «тэг», который является информацией, внедренной в файл, и который сообщает программному обеспечению и принтеру, сколько пикселей выделено для формирования одного дюйма отпечатка . Значение Тэга «Разрешение» помещается в файл, при создании сканером или цифровой камерой (программой — конвертером) файла изображения. Вы вольны изменить тэг и этим изменить размер вывода без прибавления или вычитания пикселей. Например, если Вы размещаете слайд 4×5- дюйма на сканере и хотите иметь 4000 x 5000 пикселей в файле, Вы должны сообщить программному обеспечению сканера желаемые линейные размеры и требуемое условиями будующего вывода — разрешение. Этот файл может иметь линейные размеры 4×5 дюйма, если разрешение установлено в 1000 ppi (в данном случае при совпадении линейных размеров оригинала и файла — разрешение, записаное в файл, будет совпадать с разрешением сканирования spi). Однако, файл 4000 x 5000 — пикселя может быть и 8×10 дюйма, если установить разрешение вывода — 500 ppi. если же разрешение вывода установлено 100 ppi, то файл будет выведен в чудовищном размере 40×50 дюймов. Комбинация разрешение вывода и количество пикселей позволяет нам сделать вычисления размера вывода. (Ещё о Изменении размеров и разрешения изображения в Photoshop).

Монитор, тоже устройство вывода

Итак Вы знаете, как работать в пикселях и как использовать диалоговое окно Image size Photoshop, Вы также знаете, как изменить разрешение файла. Вы можете задать вопрос, почему 72 точки на дюйм – так часто встречающееся разрешение. Это, потому что раньше большинство экранов монитора имело разрешающую способность 72 точки на дюйм (как определить разрешение своего монитора написано чуть ниже) и это – устройство вывода, как и принтер. Вообразите, что произойдет, если Вы посмотрите файл 2000 x 3000- пикселя в Photoshop. Так как вывод осуществляется — например 72 точки на дюйм, изображение при 100 процентах настолько большое, что Вы видите только часть полного изображения. Это, потому что каждый пиксель в файле будет отображен одной точкой на экране, делая изображение для редактирования неудобным. К счастью, Photoshop позволяет Вам уменьшить масштаб изображения, чтобы видеть его полностью. Чтобы делать это, однако, программное обеспечение должно оперативно расчитать интерполяцию для вывода на монитор. Когда Вы уменьшаете масштаб менее 100%, Вы видите изображение неточным, ведь каждая точка на экране сформирована исходя из информации нескольких пикселей изображения. Поэтому при работе в Photoshop некоторые операции необходимо делать при 100%, чтобы видеть все пиксели, которые будут использоваться для печати, например когда Вы поднимаете резкость изображения.

Для того, что бы узнать разрешение экрана Вашего монитора создайте новый файл с размерами 1 на 1 дюйм и задайте разрешение 100 ppi. Установите масштаб просмотра 100%, пользуясь обычной линейкой (деревянной или пластиковой, рулеткой или метром- вообщем вешью, а не инструментом компьюторной программы), ползунком в палитре Navigator изменяйте масштаб созданного изображения пока его длинна не станет равной одному дюйму (2,54 см). Полученное значение масштаба равно разрешению экрана Вашего монитора. Его можно выставить в Preferences->Units&Rules->Screen Resolution, что позволит по команде View->Print Size получать размеры изображения на экране равные размерам на отпечатке.

Количество «каналов Цвета — в одном дюйме»

Файл 1000 x 1000 — пикселей занимает большее количество дискового пространства, чем файл 100×100 — пикселей, но файлы могут быть составлены из цветовых каналов, что тоже влияет на физический размер файла, при равном разрешении. Например, размер полутонового файла 100×100 пиксель будет составлять одну треть файла RGB размером 100×100 — пикселей. Дело в том, что файл RGB имеет три цветовых канала (красный, зеленый, синий), подробнее о RGB, один для каждого цвета. Файл CMYK будет большим на одну треть файла RGB, подробнее о CMYK. Зная размеры файла в пикселях , Вы можете всегда вычислить физический размер файла в Мб, для любого режима цветового воспроизведения. Пробуйте это упражнение: Если Вы имеете файл, у которого имеется 1000 x 1000 пикселей, найдите площадь 1000 умножить на 1000 равно — 1,000,000. Это — общее количество пикселей в файле. Умножьте полученное число на количество цветовых каналов. Для файла RGB будет : 1000000×3=3000000 байт. Теперь, 3,000,000 разделите на 1024, чтобы перевести в килобайты (в одном килобайте — 1024 байта) и Вы получите 2929 Кб. Разделите еще на 1024, чтобы получить мегабайты, и Вы получите 2.86Mб. (Ещё о каналах цифрового изображения).

Покупатель осторожней Вас обманывают

Вы, возможно, видели рекламу и технические описания планшетных сканеров, в них изготовитель соблазняет Вас большими цифрами разрешающей способности. Вы естественно видели спецификацию 600 x 1200 точек на дюйм? Вы узнали, что точки на дюйм — неправильный термин (сканер имеет параметр – количество выборок на дюйм – spi), но это – незначительная неточность, по сравнению с фактом, что этот сканер может сканировать с оптической разрешающей способностью только 600 ppi. Датчик в планшетном сканере — это строка ПЗС (матрица приборов с зарядовой связью), от которой полностью зависит разрешение. В этом случае, датчик ПЗС имеет 600 трёхцветных элементов в пределах одного дюйма, способных создавать 600 пикселей в дюйме. Что же делает второе число в техническом описании? Он характеризует шаговый двигатель сканера, который перемещает ПЗС вверх и вниз по ложу сканера. Шаговый двигатель может перемещать матрицу с шагом 1/1200 дюйма. Что происходит при сканировании на 1200 ppi. ПЗС может фиксировать максимум только 600 пикселей в дюйме, при перемещении с шагом 1/1200 дюйма выборки получаются прямоугольной формы и программное обеспечение сканера вычисляет из полученых выборок значение пикселя, которое будет записано в файл изображения. Часто встречается рекомендация сканировать с разрешением кратным максимальному оптическому разрешению сканера — это было бы справедливо только в одном случае — физическое отключение «неиспользуемых» элементов ПЗС, что не реализовано ни в одном сканере. Поэтому сканируйте с разрешением необходимым для получения нужных Вам размеров файла (не превышающим максимальное оптическое разрешение сканера).

Делать вставки в текст чужой рукописи или Нет?

Если Вы должны создать файл требующий разрешение сканирования большее, чем может ваш сканер, Вы можете позволить сканеру делать «вставки в текст чужой рукописи», или же Вы можете делать «вставки в текст чужой рукописи»(интерполировать) в Photoshop или другой программе? Всё зависит от алгоритма интерполяции, который использует программное обеспечение сканера. Как правило Бикубическая (Bicubic) интерполяция (и его вариант с сглаживанием), используемая в Photoshop — обеспечивает лучший по качеству результат. Существуют программы использующие сложные математическиев алгоритмы интерполяции, результаты работы которых, немного лучше, чем Photoshop. Немногие производители сканеров сообщат Вам тип интерполяции — Bicubic, или более быстрый, но менее качественный алгоритм. Я рекомендую следующее испытание: сканируйте оригинал с максимальной оптической разрешающей способностью сканера, и сделайте интерполяцию в Photoshop на 400%. Отсканируйте ещё раз не изменяя ничего кроме масштаба – увеличьте его в четыре раза. Откройте оба изображения в Photoshop . Перенесите слой Background с нажатой клавишей Shift в окно второго изображения и измените режим наложения слоя на Difference. Если изображения нет и экран абсолютно черный, то различий в изображениях нет, если же различия есть, то надо определить какое изображение лучше — в восьми случаях из десяти изображение увеличенное в Photoshop – лучше. Но программы сканирования постоянно совершенствуются и всегда не будет лишним проверить. Вернемся к нашей задаче —

С каким разрешением сканировать изображение для различных условий печати?

  Качественное программное обеспечение сканера вычисляет необходимое разрешение сканирования по представленным ниже формулам уже интегрированным в программу. Все, что Вы должны сделать: ввести желаемый линейный размер распечатки или масштаб увеличения; разрешение вывода (значение тега — разрешение, который запишется в файл) или повышающий коэффициент и линиатуру растра . Программное обеспечение позаботится обо всем остальном. Для тех из Вас, кто хотел бы к изучить точные формулы, здесь — все, что Вам необходимо для вычисления разрешения сканирования, для наиболее часто используемых процессов печати. Для принтеров, которые могут воспроизводить непрерывные тона ( Подобно термосублимационному, thermosublimation, принтеру), Вы можете вычислять необходимое разрешение, используя следующий метод:
Разрешение сканирования =Разрешающая способность печати x Коэффициент масштабирования
Необходимые размеры определены, и они другие, чем у оригинала. Например : Вам необходимо сканировать оригинал, который 1×1 дюйма. Оригинал слишком маленький, так что Вы решаете увеличивать его до 3×3 дюйма и напечатать «это», на вашем принтере у которого разрешение 300 dpi . Следующие результаты вычисления:
Разрешение сканирования = 300 dpi x 3=900 ppi 

Сканирование для офсетной печати.

История та же самая, — Вы хотите сканировать полутоновый или цветной оригинал. Если Вы хотите печатать изображение например для использования в журнале; следующая формула для вычисления разрешения сканирования:
Scan Resolution = Printout’s Screen Ruling x Screening Factor x Sizing Factor
Разрешение сканирования=Линиатура печати*Повышающий коэффициент*Коэф. масштабирования

В офсетной печати информации одного пикселя изображения не достаточно для получения одной растровой точки поэтому, Вы должны включить коэффициент (Screening Factor ) в уравнение. Этот коэффициент увеличивает разрешение изображения и позволяет устройству вывода (Rip’у — растровому процессору ) вычислить значения для растровых точек более точно. Если Вам не знакомы иные значения для конкретных условий печати конкретных сюжетных типов изображений — используйте Коэффициент равный двум. Тогда цвет каждой растровой точки на печати будет рассчитан, исходя из значений четырех пикселей (2×2 матрица) (в действительности расчёт гораздо сложнее, чем просто осреднение значений пикселей, предоставленных для формирования единицы длинны отпечатка, тут учитывается много факторов, таких, как углы поворота растра, и значение имеет в первую очередь количество пикселей необходимых для формирования одной растровой точки ), Подробнее. Вернемся к нашему примеру так, если мы все еще хотим напечатать наше 1×1 дюймовое изображение размерами 3×3 дюймов, но на сей раз для целей офсетной печати при линиатуре печати 150 Lpi, мы должны вычислить разрешение сканирования :
Линиатура = 150 lpi
Screening Factor = 2
Масштаб увеличения = 3
Разрешение сканирования = 150 lpi x 2 x 3 = 900 ppi

Рекомендации по разрешению изображений для различных технологий вывода изображения (минимум-максимум)

  1. Монитор — разрешение значение не имеет — размер определяется пиксельным размером изображения
  2. Домашний принтер — 180-360ppi
  3. Мини фотолаборатория — 150-300ppi — это технология печати «непрерывным тоном» — каждая точка печати формируется информацией одного пикселя — никакого растрирования, как в остальных технологиях печати, здесь нет. А глаз человека не в состоянии разглядеть с растояния просмотра 20-30см точки расположенные с частотой выше 150 точек в дюйме.
  4. Офсетная печать c высокой линеатурой печати (150-175lpi)- 240-350ppi выбор зависит от качества изображения и его сюжета, например высокочастотные изображения (имеющие высокую и контрастную детализацию) могут иметь (с пользой для качества) разрешение до 1200ppi, а большинство фото сделаных цифромыльницей можно оставить с разрешением 240ppi — значения выше в качество воспроизведения ничего не добавят.
  5. Цифровая широкоформатная печать — требуемое разрешение целиком зависит от разрешения печати (количество капель-точек на единице длинны) плотера и равно четвёртой части от него, например при разрешении печати 600dpi — изображению достаточно иметь разрешение 150ppi, что соответствует качеству интерьерной широкоформатной печати (с размерами до 3 метров). Для уличных банеров разрешение нужно не более 72ppi, часто достаточно 24-36ppi. А вот растояние просмотра, на которое часто ссылаются, объясняя необходимое разрешение изображение для банера, играет роль при выборе необходимого оборудования — исходя из размера необходимой точки печати выбирается плотер (а не тот, что есть или стоит в конторе за углом) и только выбрав нужное оборудование можно определить по его характеристикам необходимое и достаточное разрешение изображения.

Ниже приведена таблица размеров файлов в мегабайтах для различных цветовых моделей (посмотреть мб можно в диалоге Image Size. в формате TIF он равен размеру файла), для стандартных форматов бумаги:

 

размер в px x px

размер, мм

CMYK 300ppi

RGB, Lab  300ppi

Gray 300ppi

Bitmap 1200ppi

 A0

9933 x 14043

841 x 1189

531. 1 мб

398.3 мб

132.8 мб

266,1 мб

 A1

7016 x 9933

594 x 841

265.5 мб

199.2 мб

66.4 мб

132,8 мб

 A2

4961 x 7016

420 x 594

132.8 мб

99.6 мб

33.2 мб

66.4 мб

 A3

3508 x 4961

297 x 420

66. 4 мб

49.8 мб

16.6 мб

33.2 мб

 A4

2480 x 3508

210 x 297

33.2 мб

24.9 мб

8.3 мб

16.6 мб

 A5

1748 x 2480

148 x 210

16.6 мб

12.4 мб

4. 1 мб

8.2 мб

 A6

1240 x 1748

105 x 148

8.2 мб

6.2 мб

2.07 мб

4.1 мб

 

874 x 1240

74 x 105

4.1 мб

3.1 мб

1.03 мб

2.07 мб

Для продолжения знакомства с кругом знаний, необходимых цветокорректору в повседневной работе смотри список статей в левой колонке сайта.


Что такое разрешение экрана и почему оно имеет значение?

Разрешение экрана — это ИТ-термины, которые люди используют, не обязательно точно зная, что они означают. Итак, что такое разрешение экрана и почему оно имеет значение?

Что такое разрешение экрана?

Изображение на экране вашего компьютера состоит из сотен тысяч или даже миллионов пикселей. Экран создает изображение, которое вы видите, изменяя цвета этих крошечных квадратных элементов.

Проще говоря, разрешение экрана влияет на четкость отображаемого текста и изображений.

Разрешение экрана — это мера того, сколько пикселей ваш экран может отображать по горизонтали и вертикали. Написано стандартно. В этом примере экран 1920 x 1080 отображает 1920 пикселей по горизонтали и 1080 пикселей по вертикали.

Различные размеры экрана, одинаковое разрешение

Здесь все становится немного сложнее. Экраны разных размеров могут иметь одинаковое разрешение экрана.

Цены на экраны резко упали за последние годы, поэтому может возникнуть соблазн купить самый большой экран, который вы можете себе позволить.

Но размер — не единственное соображение. У вас может быть ноутбук с 15-дюймовым экраном и разрешением 1366 x 786. У вас также может быть 21-дюймовый монитор на вашем столе с таким же разрешением 1366 x 786.

В этом примере, хотя монитор на вашем столе больше, он больше не будет отображаться. Как видите, общее количество пикселей такое же, просто все выглядит немного больше: 9.0005

Итак, при выборе экрана необходимо понимать как его размер, так и разрешение.

Что означает более высокое разрешение экрана?

При сравнении двух экранов одинакового размера, но с разным разрешением экран с более высоким разрешением (то есть с большим количеством пикселей) будет отображать больше того, над чем вы работаете, поэтому вам не нужно так много прокручивать .

Поскольку на этом экране больше пикселей, изображение будет более четким. Однако более высокое разрешение также означает, что элементы на экране, такие как значки и текст, будут выглядеть меньше.

Доступно больше вариантов разрешения экрана, чем когда-либо. Теперь можно купить мониторы высокой четкости (1366 x 768), полной высокой четкости (1920 x 1080), широкий сверхрасширенный графический массив (1920 x 1200) и даже мониторы сверхвысокой четкости (3840 x 2160) и 4К мониторы.

Дело не только в разрешении экрана

Когда вы покупаете новый компьютер или монитор, не позволяйте себе руководствоваться только разрешением экрана. Яркость и цветопередача могут различаться на разных экранах, поэтому лучший способ выбрать — сесть перед экраном и использовать его.

Есть несколько эмпирических правил, которые помогут вам выбрать правильное разрешение:

  • Если вы покупаете монитор для своего рабочего стола , выберите 21-дюймовый экран или больше, с разрешением не менее 1 920 x 1 080 или больше Этот экран называется full-HD , поскольку его разрешение позволяет отображать видео высокой четкости.
  • Если вы покупаете ноутбук, который в основном будете использовать с отдельным монитором , стандартный экран подойдет. Экраны ноутбуков с более высоким разрешением могут стоить намного дороже, чем стандартные модели, и не стоят таких затрат, если вы будете использовать их только время от времени.
  • Графические дизайнеры или веб-разработчики , которым нужен одновременный доступ к большому количеству различных окон, могут воспользоваться специализированными экранами с высоким разрешением . Если вы чувствуете себя хорошо, 16-дюймовый MacBook Pro от Apple с дисплеем Retina может похвастаться технологией True Tone и высоким коэффициентом контрастности, обеспечивающим более глубокий черный и более яркий белый.

Автор Джон МакГарви.

Просмотр тем: Компьютерное оборудование

Компьютерные системы для бизнеса (5)

Компьютерные принтеры и сканеры (5)

Сетевые серверы (4)

Запоминающие устройства и носители (3)

Мобильные устройства (11)

Что означает *?

Если ссылка имеет *, это означает, что это партнерская ссылка. Чтобы узнать больше, ознакомьтесь с нашими часто задаваемыми вопросами.

Что такое разрешение экрана и почему оно имеет значение?

Удивительное качество видео — это то, чего хотят все, но знаете ли вы, что такое разрешение экрана и что означают цифры? Хотя разрешение, безусловно, имеет значение, выбор правильного экрана, монитора или телевизора означает знание того, как выбрать лучшее для ваших нужд.

Содержание
  • Что такое разрешение экрана?
  • Размер экрана и разрешение экрана
  • Как на вас влияет разрешение экрана?
  • Вам нужно HD, 4K и т. д.?
  • Что такое собственное разрешение экрана?
  • LED против OLED
  • Часто задаваемые вопросы

Что такое разрешение экрана?

Во-первых, давайте определим разрешение экрана. Экран компьютера использует миллионы пикселей для отображения изображений. Эти пиксели расположены в сетке по горизонтали и вертикали. Количество пикселей по горизонтали и вертикали отображается как разрешение экрана.

Разрешение экрана обычно записывается как 1024 x 768 (или 1366 x 768, 1920 x 1080). Это означает, что экран имеет 1024 пикселя по горизонтали и 768 пикселов по вертикали (или 1366 пикселов по горизонтали и 768 пикселов по вертикали и т. д.).

Если вы не знаете, какое у вас разрешение экрана, вы можете найти его с помощью этого бесплатного инструмента.

Размер экрана и разрешение экрана

Помимо разрешения, еще одним фактором, который следует учитывать, является размер экрана. Размер экрана — это физическое измерение диагонали экрана. Размер экрана измеряется в дюймах, т.е. 5”, 10”, 13”, 17” и т. д.

Размер экрана и разрешение экрана напрямую не связаны. Например, у вас может быть 10,6-дюймовый планшет с разрешением 1920 x 1080 и 24-дюймовый настольный монитор с таким же разрешением. Поскольку разрешение обоих устройств одинаковое, они смогут отображать абсолютно одинаковое изображение (по количеству пикселей) — просто изображение на экране компьютера будет выглядеть намного больше из-за больших физических размеров устройства. монитор.

Однако более крупное изображение также будет выглядеть более размытым, поскольку расстояние между точками больше (т. е. плотность пикселей, измеряемая в пикселях на дюйм (ppi), ниже).

Точно так же два монитора одинакового физического размера могут иметь разное разрешение. В этом случае монитор с более высоким разрешением сможет уместить больше на одном экране. Изображения будут меньше, но четче, потому что расстояние между пикселями будет короче.

Как на вас влияет разрешение экрана?

Если вы до сих пор следили, то, скорее всего, уже пришли к выводу, что с точки зрения разрешения экрана чем больше, тем лучше. Это не обязательно так.

При наличии двух экранов одинакового размера экран с более высоким разрешением показывает больше, а прокрутки меньше. Кроме того, изображение становится более четким.

Однако компромисс заключается в том, что изображение также будет меньше. Это напрягает ваши глаза, и в крайних случаях вам может потребоваться увеличить изображение, чтобы увидеть его правильно. Это на самом деле заставляет вас видеть меньше на экране и использовать более низкое разрешение. Какой смысл приобретать устройство с более высоким разрешением, если вы не сможете эффективно его использовать? Особенно это касается смартфонов, планшетов и других небольших устройств.

Вы можете подумать, что хотя вам и не нужно отчаянно сверхвысокое разрешение, раз оно доступно, почему бы не получить его. Есть несколько причин.

Во-первых, это деньги. Экраны со сверхвысоким разрешением стоят дороже, независимо от размера экрана.

Вторая причина техническая. Высокие разрешения требуют больше ресурсов. Если вы установите частоту обновления экрана на 60 Гц, ваша видеокарта будет обновлять кадр 60 раз в секунду. Для большинства людей 60 Гц — это низко, и, если возможно, они бы предпочли 120 или 144 Гц. Чем больше разрешение, тем выше нагрузка на видеокарту. Это связано с тем, что каждый пиксель на экране обновляется одновременно. Чем больше пикселей, тем выше напряжение.

В то время как 1920 x 1080 x 60 кадров в секунду подходит даже для недорогих видеокарт, более высокие разрешения и частота обновления создают проблемы даже для высокопроизводительных карт.

Вам нужно HD, 4K и т. д.?

Помимо самих чисел, теперь вам также нужно учитывать такие вещи, как HD, 4K, 8K и UHD. Большой переход от аналогового к цифровому телевидению показывает разницу в четкости с HD или высокой четкостью. С HD вы автоматически получаете соотношение сторон 16:9, как в кинотеатре, а также разрешения 720p (1280 x 720) и 1080p (1920 х 1080). Реже встречается 1080i, которое делит разрешение на две группы по 540 строк в каждой. Все это означает, что вы получите гораздо более четкое изображение.

Но потом появилось 4K. Эти экраны предназначены для отображения еще большего количества деталей благодаря гораздо более высокому разрешению, которое варьируется от 3840 x 2160 до 4096 x 2160. Они идеально подходят для мелких деталей, связанных с играми и фильмами. Однако нет смысла выбирать именно разрешение 4K, если у вас нет игр и видео, созданных для него. Однако все больше игр, фильмов и даже сериалов создаются в формате 4K.

На данный момент HD достаточно для большинства пользователей и стал стандартом для современных экранов, от мобильных устройств до телевизоров с большим экраном. Экран высокой четкости 1080p обеспечивает потрясающую четкость и качество по довольно доступной цене. Также часто можно найти 4K-телевизоры по более доступным ценам, хотя все, что не в 4K, все равно будет отображаться в HD.

Новый золотой стандарт разрешения — 8K. Точно так же, как 4K сделал с HD, 8K удваивает разрешение 4K до 7680 x 4320. Естественно, телевизоры 8K дороже, и возможности просмотра пока ограничены.

Другой часто встречающийся вариант — UHD. Технически это всего лишь 4K. Ultra HD (UHD) относится к нижней границе диапазона разрешений 4K при разрешении 3840 x 2160.

Какое разрешение экрана выбрать? Для небольших устройств, таких как телефоны, вам не нужно максимально доступное качество, поскольку экран меньше. Сэкономьте деньги и пропустите телефоны 4K. Но если вы хотите добиться больших кинематографических впечатлений, более высокое разрешение для большого компьютерного монитора или телевизора определенно того стоит.

Что такое собственное разрешение экрана?

Если вы покупаете компьютер, телефон, планшет или телевизор, вы можете встретить термин «исходное разрешение экрана» или «собственное разрешение». Все это означает, что это разрешение по умолчанию и, как правило, максимально возможное разрешение для этого конкретного устройства. Устройство может поддерживать более низкие разрешения, что может потребоваться в зависимости от ваших потребностей. Обычно рядом с ним стоит «рекомендуется» в настройках разрешения вашего устройства.

Однако не рекомендуется пытаться обойти собственное разрешение экрана и увеличить его. Ваша система обычно просто автоматически уменьшает разрешение, что может создать размытое или зернистое изображение. Даже если вы попробуете масштабировать вручную, качество изображения не будет таким хорошим, как ваше родное разрешение. Это разрешение определяется аппаратным обеспечением вашей системы и не может быть изменено без замены самого оборудования. В этот момент лучше просто купить устройство с более высоким разрешением.

Светодиод против OLED

Когда дело доходит до разрешения экрана, еще один элемент, на который следует обратить внимание, — это светодиод против OLED. Дело не в том, что они обязательно меняют само разрешение экрана, но каждая технология влияет на яркость и резкость пикселей на экране.

Благодаря светодиоду все пиксели на экране постоянно светятся. Легкая шторка за самим экраном осветляет или затемняет пиксели по мере необходимости. В OLED подсвечиваются только те пиксели, которые должны быть освещены. Они работают аналогично плазменным экранам с углеродной пленкой за активированным экраном, когда на него попадает электричество.

Благодаря тому, что пиксели подсвечиваются только по мере необходимости, черный цвет на OLED-дисплее, как правило, намного четче. Со светодиодом вы можете заметить, что черный цвет более серый. В результате экраны OLED часто кажутся более резкими и четкими.

Однако OLED-экраны могут иметь проблемы с выгоранием — как и плазменные экраны, поэтому, если ваш экран имеет тенденцию оставаться на одном и том же экране в течение длительного времени, лучше использовать светодиоды.

Часто задаваемые вопросы

1. Должен ли я выбирать более низкое разрешение экрана?

Единственный раз, когда вам следует настроить разрешение экрана на более низкое число, чем исходное или максимальное разрешение, — это когда приложение, видео, шоу или что-либо еще, что вы пытаетесь просмотреть, оптимизировано, чтобы лучше всего выглядеть только при определенном разрешении. Например, старые телешоу часто отображаются с черными полосами по обеим сторонам, так как их растяжение в соответствии с разрешением и размером экрана современных телевизоров делает их размытыми.

Если что-то, что вы пытаетесь просмотреть, кажется растянутым и размытым, постепенно уменьшайте разрешение, чтобы посмотреть, поможет ли это. Например, на YouTube некоторые видео выглядят лучше в 480p, чем в 1080p. Это просто то, как они были изначально сняты.

2. Могу ли я просто заменить экран ноутбука, чтобы увеличить разрешение экрана?

Не рекомендуется. Экран вашего ноутбука предназначен для работы с внутренним оборудованием. Если ваша видеокарта не предназначена для рабочей нагрузки с более высоким разрешением, она может перегреть ваш ноутбук. Это проблема совместимости. Это то же самое, что и материнская плата вашего ноутбука, которая может увеличить объем оперативной памяти только до определенной точки.

3. Могу ли я просто купить монитор с более высоким разрешением, чтобы увеличить исходное разрешение?

Да и нет. Все зависит от максимальной производительности вашего графического процессора. В то время как монитор, поставляемый с вашим настольным компьютером или ноутбуком, может, например, поддерживать максимальное разрешение 720p, ваш графический процессор может поддерживать разрешение до 1080p. Перед покупкой нового монитора проверьте характеристики своего графического процессора. Если ваш графический процессор не поддерживает более высокие разрешения, вы получите только собственное разрешение на новом мониторе.

4. При меньшем разрешении экрана потребляется меньше энергии?

Да. Тем не менее, обычно этого недостаточно, чтобы иметь большое значение. Если вы действительно хотите снизить энергопотребление, особенно с мобильными устройствами, выберите OLED-экран. Подсвечивая меньше пикселей за раз, ваше устройство потребляет меньше энергии, что приводит к немного большему сроку службы батареи.

Обычно вы можете увеличить срок службы батареи, просто изменив системные настройки. Например, вы можете увеличить время автономной работы Nintendo Switch, просто уменьшив яркость.

Кристал Краудер

Кристал Краудер более 15 лет проработала в сфере высоких технологий, сначала в качестве специалиста по информационным технологиям, а затем в качестве писателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *