Советы и лайфхаки

Стабилизация изображения это – Способы стабилизации изображения

Содержание

Способы стабилизации изображения

В статье исследуются способы стабилизации изображения. Рассмотрены основные технические характеристики, а также достоинства и недостатки разных способов.

Ключевые слова: стабилизация изображения, оптический стабилизатор, цифровой стабилизатор.

Введение

Современные требования, предъявляемые к оптическим приборам, сводятся в основном к сочетанию двух противоречащих друг другу характеристик: высокого углового разрешения и минимальной массы и габаритных размеров прибора. Эти требования сохраняются также для аппаратуры, работающей в условиях подвижного или недостаточно устойчивого основания. Для сохранения потенциальных возможностей оптических приборов в области разрешающей способности чаще сего используют различные дополнительные механические устройства, снижающие влияние движения основания на качество изображения. Такие устройства называют системами стабилизации изображения.

1 Способы стабилизации изображения

Существует два основных способа стабилизации изображения: оптический и цифровой (электронный). Электронная стабилизация изображения использует комплексный программный алгоритм улучшения качества изображения. Оптическая же является аппаратным решением.

1.1 Оптическая стабилизация изображения

Оптический стабилизатор состоит из двух элементов: детектора движения – системы гироскопов, которые фиксируют перемещение прибора в пространстве, и компенсирующей линзы. Принцип действия таков: компенсирующая линза в объективе смещается в противоположном направлении от зарегистрированного датчиком смещения. В результате лучи света на всех кадрах попадают в одну и ту же область на светочувствительной матрице. Снятие показаний с детектора происходит чаще, чем считывание данных с матрицы, и линза успевает скорректировать свое положение еще до снятия изображения с матрицы. Благодаря этому не возникает ни сдвигов изображения между кадрами, ни размытости в рамках одного кадра.

Одним из минусов оптического стабилизатора является использование при его производстве дорогостоящих и сложных механических элементов. Кроме того, наличие оптической группы из нескольких элементов может сказаться на светосиле объектива, то есть на способности обеспечивать тот или иной уровень освещенности изображения при данной яркости объекта.

В общем случае оптические стабилизаторы делятся на два вида: первые перемещают весь прибор на подвижном основании, вторые перемещают оптические элементы внутри прибора. В последних для стабилизации оптического изображения обычно применяются следующие элементы.

Зеркала.   Для изменения направления визирного луча может быть использовано плоскопараллельное зеркало с внутренним или наружным отражающим покрытием. Чтобы повернуть линию визирования на заданный угол, зеркало поворачивают на половинный угол.

Клинья.   Для малого отклонения визирного луча при значительном механическом перемещении применяются преломляющие оптические клинья. Два одинаковых клина, поворачивающихся в разные стороны на одинаковые угла, образуют клин с переменным углом отклонения луча.


Куб-призма.   Состоит из двух прямоугольных призм, склеенных гипотенузными гранями, на которых имеются отражающие покрытия. Куб-призма дает возможность изменения направления визирного луча больше, чем на 180˚.


Призма Дове, или призма прямого зрения. Эта призма оборачивает оптическое изображение сверху вниз. Призмой Дове пользуются для того, чтобы вращать изображение вокруг оси визирования.


Призма Пехана. Поскольку призма Дове имеет значительную длину, то в компактных устройствах для вращения изображения используют призму Пехана, представляющую собой склейку призмы Шмидта и полупентапризмы. Призма Пехана может работать и в сходящихся пучках, но потери света здесь больше, поэтому применяется она реже.


Жидкостный клин.   Кювета с эластичными стенками, прозрачными окнами, заполненная прозрачной легкотекучей жидкостью, используется в системах стабилизации оптического изображения как регулируемый оптический клин. В зависимости от наклона стеклянного окна визирный луч, проходящий через кювету, отклоняется в ту или иную сторону.

Количество оптических элементов, используемых для стабилизации оптического изображения, непрерывно увеличивается. Здесь приведены только основные, применение которых в оптическом приборостроении стало традиционным.

1.2 Цифровая стабилизация изображения

Действие цифрового стабилизатора основано на анализе смещения изображения на матрице. Изображение считывается только с части матрицы, таким образом по краям остается запас свободных пикселей. Эти пиксели и используются для компенсации смещения прибора. Т.е. при дрожании кадра картинка перемещается по матрице, а процессор фиксирует колебания и корректирует изображение, смещая его в противоположном направлении.

В цифровых стабилизаторах отсутствуют подвижные части (в частности, оптические группы из нескольких линз). Это положительно сказывается на надежности, так как меньше элементов подвержены поломке. Кроме того, использование цифровых стабилизаторов изображения позволяет увеличить чувствительность светопоглощающих элементов (матрицы). Также скорость реакции цифрового стабилизатора может быть выше, чем оптического.

У цифровых стабилизаторов есть ряд недостатков по сравнению с оптическими, в частности, при плохой освещенности получается изображение низкого качества. С увеличением фокусного расстояния объектива эффективность снижается: на длинных фокусах матрице приходится совершать слишком быстрые перемещения со слишком большой амплитудой, и она просто перестаёт успевать за «ускользающей» проекцией.

Таким образом, считается, что стабилизация сдвигом матрицы менее эффективна, нежели оптическая стабилизация.

2 Основные технические характеристики

Одним из основных параметров, характеризующих качество функционирования систем стабилизации оптического изображения, является динамическая точность, которая определяется ошибками стабилизации оптического изображения и ошибками слежения линии визирования за исследуемым объектом.

Задача определения точности стабилизации оптического изображения сводится к измерению угловых отклонений линии визирования при угловых и возвратно-поступательных переносных движениях основания, обусловленных качкой подвижного объекта. При этом необходимо учитывать ряд специфических особенностей функционирования системы в системах рассматриваемого класса. Это, прежде всего, малые величины ошибок стабилизации и слежения; необходимость измерения точности стабилизации оптического изображения непосредственно на оптическом элементе, который соединен с системой неединичной кинематической связью и совершает колебания в инерциальном пространстве, необходимость измерения ошибок стабилизации и слежения при различных положениях системы и оптического элемента.

Список используемых источников

  1. Система стабилизации и наведения линии визирования с увеличенными углами обзора / В.А, Смирнов, В.С. Захариков, В.В. Савельев // Гироскопия и навигация, № 4. Санкт-Петербург , 2011. С.4-11.

  2. Автоматическая стабилизация оптического изображения / Д. Н. Еськов, Ю. П., Ларионов, В. А. Новиков [и др.]. Л.: Машиностроение,1988. 240 с.

  3. Стабилизация оптических приборов / А.А. Бабаев -Л.: Машиностроение, 1975. 190 с.

journalpro.ru

Принцип работы оптического стабилизатора изображения в объективах Canon

Оптическая стабилизация изображения в объективах — это технология, позволяющая механически компенсировать угловые движения и дрожание фотокамеры для предотвращения смазывания изображения при больших выдержках (на жаргоне «шевелёнки»).

Система оптической стабилизации применяется в случаях когда вести съемку со штатива не представляется возможным и по сути дела, служит заменой штативу в некотором диапазоне значений выдержки.

Впервые технология оптической стабилизации изображения была представлена в 1994 году фирмой Canon получившая название OIS (англ. Optical Image Stabilizer — оптический стабилизатор изображения). Сама технология настолько хорошо зарекомендовала себя, что была подхвачена другими производителями объективов.

Кардинальных отличий принципов работы стабилизаторов нет, тем не менее разные производители называют свою реализацию оптической стабилизации по-разному:

  • Canon — Image Stabilization (IS)
  • Nikon — Vibration Reduction (VR)
  • Panasonic — MEGA O.I.S.(Optical Image Stabilizer)
  • Sony — Optical Steady Shot
  • Sigma — Optical Stabilization (OS)
  • Tamron — Vibration Compensation (VC)
Принцип работы оптического стабилизатора изображения объектива

Поскольку идея IS принадлежит Canon inc рассмотрим принцип работы стабилизатора на примере ее продукции.

В первой части материала рассмотрим наглядно работу IS не вдаваясь в теорию и технические термины, а в качестве пособия воспользуемся великолепными роликами компании.

Сердцем объективов IS от Canon является компактный и легкий стабилизатор изображения, который работает вместе с дополнительной группой линз, высокоскоростным микроконтролером и двумя вибро-гироскопическими датчиками, что позволяет безотказно и точно корректировать сотрясение и дрожание фотокамеры.

Как работает встроенный стабилизатор изображения

Дрожание (шевеленка) фотокамеры вызывает движение объектива, изменяя угол потока входящего света относительно оптической оси, и как следствие с проецированное изображение «плавает» по поверхности матрицы, в результате получаются размытые фотоснимки.

Объективы Canon оснащенные системой IS корректируют смещение потока света, перемещая подвижную двояковогнутой линзу оптического стабилизатора в противоположную сторону по направлению движения объектива. Это стабилизирует положение с проецированного изображения на матрице во время съемки и снижает степень «размазывания» снимка.

Демонстрация работы оптического стабилизатора изображения объектива

Объектив Canon EF 400mm f/4 DO IS USM — смоделированный для иллюстрации поперечный срез.

Новая технология Hybrid IS разработанная специально для макросъемки

Angle camera shake — Резкое изменение угла направления объектива (на рис. сверху) в круговой плоскости скажется на качестве изображения при обычной съемке (например пейзажной)

 

 

Shift camera shake — в то время как смещение фотоаппарата в линейной плоскости (на рис. внизу) параллельно объекта съемки больше скажется на качестве при макро съемке.

Технология Canon Hybrid IS — принцип работы

При макро съемке вибрация и дрожание фотокамеры влияет как на спроецированное изображение на матрице, так и на изображение сформированное в видоискателе что в свою очередь мешает сосредоточиться и зафиксировать четкое изображение.

В оптических стабилизаторах Hybrid IS задействованы: датчик угловой скорости для определения степени отклонения угла из-за эффекта дрожания рук, который использовался в обычных механизмах стабилизации изображения (в народе антитряс), а также новый датчик ускорения, определяющий степень смещения объектива в линейной плоскости. Микроконтролер анализирует сигналы с датчиков и по специальному алгоритму формирует управляющие сигналы для смещения линзы стабилизатора при помощи электромагнитного привода.

Таким образом оптические стабилизаторы Hybrid IS позволяют уменьшить влияние обеих типов «шевеленки».

Учитывая что при макро съемке зачастую не возможно воспользоваться штативом, технология Canon hybrid is просто незаменима.


Кнопки:
IS Off — демонстрация изображения в видоискателе снимаемого объекта с выключенным стабилизатором изображения
IS — демонстрация изображения в видоискателе снимаемого объекта с включенным стабилизатором изображения
Hybrid IS — демонстрация изображения в видоискателе снимаемого объекта при работе стабилизатора изображения Hybrid IS
Shooting — аналогична кнопки затвора (спуск затвора) в фотоаппарате, если кликнуть «мышкой» по кнопке, ролик продемонстрирует какой может получится снимок.
Dynamic IS — демонстрация работы динамического стабилизатора изображения

Dynamic IS используется телевиках и широкоугольных объективах при съемке фильмов. Динамический стаб помогает уменьшить дрожание и смещение фотокамеры при съемке во время ходьбы.

Технология «Dynamic IS» ранее считалась трудно реализуемой.

 

www.fototechnic.ru

| Стабилизация изображения. Глава 1 – Оптическая стабилизация в объективах Kaddr.com

Системы стабилизации изображения призваны компенсировать дрожание наших рук и, соответственно, помочь нам получить более резкую картинку. Существует два основных типа стабилизации: оптическая стабилизация внутри объектива и матричная стабилизация изображения. Давайте остановимся более подробно на первом типе и рассмотрим всю его подноготную.

Появление систем стабилизации внутри объективов уходит корнями в позднюю плёночную эпоху – 90-е годы прошлого века. В те лихие для нашего люда времена и появились первые объективы со стабилизатором на своём борту. Первопроходцем в этой стезе стала компания Canon, которая выпустила свой первый стабилизированный объектив с маркировкой IS в 1995 г. (официальный анонс стабилизатора IS произошёл годом ранее). Nikon подтянулся лишь спустя 5 лет и анонсировал фирменную систему подавления вибраций VR лишь в 2000 г.

 

Почему стабилизатор решили разместить именно в корпусе объектива? Этому есть несколько логичных объяснений. Первое и самое важное – в 90-е годы все ещё снимали на плёночную технику и технологически намного легче было внедрить технологию, которая бы стабилизировала световой поток ещё в объективе, т.е. до того он попадал непосредственно на матрицу фотоаппарата. Согласитесь, ведь проще чтобы система проделала свою работы внутри линзы, а не пыталась переместиться рулон с 35-миллиметровой плёнкой.

Вторым аргументом в пользу стабилизатора внутри объектива была дороговизна цифровых фотокамер и их малая популярность. Да, спустя некоторое время, доживающая свои последние года, компания Konica-Minolta таки представила первую в своём роде систему матричной стабилизации изображения. Но она стала популярной только сейчас – во времена тотальной экспансии беззеркалок. Впрочем, об этом мы поговорим во второй главе.

Различные производители по-разному маркируют свои линзы, имеющие на борту стабилизатор изображения. Но по принципу действия они все схожи друг с другом:

  • Nikon — VR (Vibration Reduction)
  • Canon — IS (Image Stabilization)
  • Sony — OSS (Optical Steady Shot)
  • Panasonic — MEGA O.I.S. или Power O.I.S. (Optical Image Stabilizer)
  • Fujifilm – OIS (Optical Image Stabilizer)
  • Sigma — OS (Optical Stabilization)
  • Tamron — VC (Vibration Compensation)
  • Tokina – VCM (Vibration Compensation Module)

Давайте рассмотрим, как работает стабилизатор на борту фотокамеры, на примере системы IS от Canon. Для начала посмотрите эту анимацию:

Как видно, основную роль в процессе стабилизации изображения играет двояковогнутая линза, которая смещается при помощи электромагнитов в противоположную сторону относительно траектории движения объектива. Уровень смещения определяется датчиками угловой скорости, оснащёнными гироскопами, и управляется скоростным микроконтроллером (до 1000 считываний данных за секунду). Почему датчика именно 2, а не 5 или 10? Всё просто – первый отвечает за смещение по горизонтали, второй – по вертикали.

Так этот процесс выглядит на видео:

В результате проекция изображения остаётся неподвижной относительно матрицы фотоаппарата и на выходе мы получим качественную картинку без смаза.

Наиболее эффективно оптический стабилизатор будет работать на выдержках, близких к 1 / фокусное расстояние. Вы же помните правило, согласно которому выдержка напрямую зависит от фокусного расстояния? Например, вести комфортную съёмку с рук на 100 мм можно и нужно на выдержках 1/100 с и короче. Это без стабилизатора. При его непосредственном участии можно выиграть до 4-5 стопов и снимать уже не на 1/100 с, а на 1/20-1/25 с.

На коротких (менее 1/500 с) и на длинных (более 1/4 с) выдержках стабилизатор лучше выключать – он может только помешать вам сделать нужный кадр. В первом случае это связано с тем, что датчик стабилизатора изображения будет работать на пределах своих возможностей. Та и получить смаз на таких коротких значениях выдержки практически нереально.

На длинных выдержках стабилизатор тоже является бесполезным. Лучше воспользоваться штативом или установить фотоаппарат на какой-нибудь неподвижный объект. Когда камера установлена на штатив, включенный стабилизатор вполне может оказаться источником шевеленки. Это связанно с тем, что он может пытаться определить фантомные смещения и сам сгенерировать небольшую вибрацию. Конечно, маловероятно что такое может случиться, особенно с современными системами стабилизации, но бывает всякое.

Плюсы стабилизации внутри объектива:

  1. Оптическая стабилизация внутри объектива считается более эффективной, особенно при использовании телеобъективов. Это связано с тем, что стабилизировать изображение на длинном фокусном расстоянии гораздо сложнее – датчик изображений должен совершать больше движений, чем ему позволяет конструкция и месторасположение.
  2. Возможность выиграть от 1 до 5 стопов (в зависимости от поколения) при съёмке в условиях недостаточной освещённости.
  3. При использовании оптической стабилизации внутри объектива изображение передаётся в видоискатель и на датчики автофокуса уже в стабилизированном виде, что позволяет лучше контролировать объект съёмки и более эффективно срабатывать автофокусу.

Минусы стабилизации внутри объектива:

  1. Стабилизированные объективы стоят дороже и имеют бóльшие габариты.
  2. В некоторых случаях стабилизатор может генерировать при работе посторонние звуки, что критично при съёмке видео.
  3. Использование стаба может ухудшить боке.
  4. В случае выхода следующего поколения стабилизатора, придётся покупать новый объектив – модуль системы стабилизации изображения не сменный.

На сегодняшний существует много разновидностей систем стабилизации внутри объективов. Это и Canon Hybrid IS, предназначаемый для макросъёмки, и Nikon VR Sport, который можно обнаружить на профессиональных телееобъективах, и другие узконаправленные вариации. Все эти системы предназначены для того, чтобы мы могли снимать на более длинных выдержках в условиях недостаточной освещённости и получать при этом резкую и не размытую картинку.

kaddr.com

Технологии стабилизации изображения в объективах

Оптическая стабилизация изображения – это технология, используемая для механической компенсации собственных угловых движений камеры с целью предотвращения смазывания картинки при съемке на больших выдержках. Встроенная в объектив система оптической стабилизации служит своеобразной заменой объективу в некотором диапазоне значений выдержки. Выигрыш от использования оптической стабилизации обычно составляет примерно 3 – 4 ступени экспозиции. Благодаря механизму оптической стабилизации в некоторых съемочных ситуациях фотограф может увеличить выдержку и спокойно снимать с рук.

Технология оптической стабилизации изображения появилась в 1994 году, когда компания Canon представила для массового рынка новую систему, получившую название OIS (Optical Image Stabilizer — оптический стабилизатор изображения). Схема этого оптического стабилизатора состояла из специальных линз, которые корректировали направление светового потока внутри объектива и электромагнитных приводов, отвечающих за отклонения этих самых линз.

Стабилизирующий элемент, встроенный в объектив, отличался подвижностью по вертикальной и горизонтальной осям. По команде с сенсора он отклонялся электрическим приводом таким образом, чтобы проекция изображения на светочувствительной пленке (или матрице) полностью компенсировала колебания фотоаппарата за время экспозиции. Благодаря такому решению при малых амплитудах колебаний камеры проекция всегда остается неподвижной относительно матрицы, что и обеспечивает изображению необходимую четкость.

Главной трудностью при создании такой оптической стабилизации являлось точная синхронизация дрожания рук фотографа и величины отклонения корректирующих линз. Однако в компании Canon успешно справились с решением этой проблемы. Правда, не обошлось и без некоторых недостатков. В частности, присутствие дополнительного оптического элемента в конструкции объектива снижает его светосилу.

Принципы работы системы оптической стабилизации, заложенные в начале 90-х годов, по большому счету остались неизменными вплоть до наших дней. За японской компанией потянулись и другие ведущие производители фототехники, которые представили свои системы оптической стабилизации изображения, получившие фирменные наименования:

Canon — Image Stabilization (IS)

Nikon — Vibration Reduction (VR)

Panasonic — MEGA O.I.S. (Optical Image Stabilizer)

Sony — Super Steady Shot

Sony Cyber-Shot — Optical SteadyShot

Sigma — Optical Stabilization (OS)

Tamron — Vibration Compensation (VC)

Pentax — Shake Reduction (SR)

Несмотря на разные названия и описания к этим системам, они основываются на одном подходе, но могут отличаться между собой степенью эффективности компенсации дрожания камеры. Кратко пройдемся по различным вариантам оптической стабилизации от известных компаний-производителей фотооборудования.

Canon 

Компания Canon, являющаяся в некотором роде первопроходцем в области оптической стабилизации изображения, традиционно уделяет большое внимание  реализации этой системы в своих объективах, предназначенных для зеркальных и компактных камер. Фирменные объективы с встроенной системой оптической стабилизации имеют пометку IS (Image Stabilizer). Система IS предусматривает наличие дополнительной группы линз, размещенных в средней части конструкции объектива. Электромагнитный привод позволяет мгновенно смещать одну из линз этой группы относительно оптической оси. Вибрация камеры фиксируется посредством двух пьезоэлектрических сенсоров, которые часто называют гироскопическими. Один из сенсоров обнаруживает горизонтальное смещение камеры, другой же, соответственно, отвечает за вертикальную плоскость.

Сигналы от гироскопических сенсоров обрабатываются микропроцессором, который определяет величину и направление смещения изображения относительно оптической оси объектива. Далее микропроцессор приводит в действие электромагнитный привод блока стабилизации, чтобы скорректировать положение изображения за счет смещения подвижной линзы по двум осям в плоскости, перпендикулярной оптической оси объектива. В результате, изображение может быть стабилизировано, снижается степень «размазывания» снимка. Тесты показывают, что система IS может быть эффективной при удлинении выдержек до 2 – 3 ступеней. При необходимости ее можно принудительно отключить.

Для осуществления качественной макросъемки компания Canon предлагает объективы с встроенной системой оптической стабилизации Hybrid IS. Вибрация и дрожание камеры существенно влияют на качество и четкость картинки при фотографировании небольших по размеру объектов. И стандартная система оптической стабилизации здесь не так эффективна. Новая технология оптической стабилизации Hybrid IS предусматривает добавление еще одного датчика угловой скорости для определения степени отклонения угла из-за эффекта дрожания рук, а также нового датчика ускорения, определяющего степень смещения объектива в линейной плоскости.

Нужно отметить, что смещение фотоаппарата в линейной плоскости очень сильно сказывается именно на качестве макросъемки. Теперь блок IS включает в себя уже четыре датчика, а не два, чтобы более эффективно компенсировать малейшие колебания цифрового фотоаппарата. Микропроцессор анализирует сигналы, поступающие с датчиков, и по специальному алгоритму формирует управляющие сигналы для смещения линзы стабилизатора посредством электромагнитного привода. Система Hybrid IS позволяет уменьшить влияние обеих типов «шевеленки», то есть как резкое изменение  угла направления объектива в круговой плоскости, так и смещение фотокамеры в линейной плоскости.

Также японская компания применяет технологию оптической стабилизации Dynamic IS, перекочевавшую в фотокамеры из видеосъемки. Она используется в телевиках и широкоугольных объективах при съемке видеороликов. Динамический оптический стабилизатор изображения призван обеспечить получение более стабильной картинки при съемке видео за счет компенсации низкочастотных вибраций, таких как дрожание фотоаппарата или съемка с рук.

Nikon

Другие производители внедряют похожие технологические решения. В частности, компания Nikon в своих объективах использует систему оптической стабилизации Vibration Reduction (VR). Тут также применяется дополнительная группа линз с подвижным элементом, а величина и направление смещения камеры в процессе экспонирования снимка вычисляются микропроцессором. Он обрабатывает данные, поступающие с двух гироскопических сенсоров с частотой примерно 1000 значений в секунду. В случае необходимости микропроцессор посредством двух электроприводов управляет смещением подвижной линзы относительно ее центрального положения.

Система VR активируется автоматически при нажатии фотографом кнопки спуска наполовину. Когда кнопка спуска нажата наполовину, стабилизатор изображения работает менее эффективно и подавляет лишь небольшие вибрации для комфортной компоновки кадра в видоискателе или на ЖК-дисплее. В момент же полного нажатия на кнопку спуска подвижная линза мгновенно устанавливается в центральное положение, что позволяет уже максимально эффективно компенсировать вибрации камеры.

Таким образом, в процессе экспонирования снимка включается режим максимально точной компенсации вибраций, обеспечивающий получение более четкой картинки. Использование системы VR позволяет в несколько раз увеличить длительность выдержки. Различные модификации этого механизма оптической стабилизации (VR и VR II) применяются в широком спектре объективов, выпускаемых для зеркальных фотоаппаратов Nikon.

Panasonic

Panasonic применяет систему оптической стабилизации под названием MEGA O.I.S, которая изначально разрабатывалась специалистами компании для фирменных видеокамер, но затем была адаптирована под фототехнику. В частности, для использования в цифровых фотоаппаратах линейки Lumix со сменной оптикой. Для компенсации смещения проецируемого через объектив изображения относительно светочувствительной матрицы оптическая система дополняется группой линз с подвижным элементом. Зафиксировав вибрацию фотоаппарата, встроенный гироскопический датчик подает сигнал к микропроцессору для расчета коррекции. Затем на основе полученных данных микропроцессор смещает линзу стабилизатора таким образом, чтобы свет направлялся точно к матрице. Весь этот процесс занимает считанные доли секунды.

Обладатели фотоаппаратов Lumix, оснащенных системой MEGAO.I.S., могут переключать режимы работы стабилизатора. Первый режим предусматривает постоянную работу оптического стабилизатора, а второй – предполагает, что система стабилизации включается только в момент нажатия на спусковую кнопку. Естественно, поддерживается возможность полного отключения системы стабилизации в тех случаях, когда это диктуется условиями съемки или желанием фотографа.

Pentax

У компании Pentax имеется своя фирменная система стабилизации под названием Shake Reduction (SR). Впервые для коммерческого пользования она была представлена в 2006 году, когда компания запустила в продажу компактный 8-мегапиксельный цифровой фотоаппарат Optio A10. Позже Pentax начала использовать данную систему стабилизации не только в своих компактных, но и в зеркальных цифровых камерах.

Технология Shake Reduction основана на сдвиге матрицы фотоаппарата. В этом случае по вертикали и горизонтали сдвигается уже не подвижная линза стабилизатора, а светочувствительная матрица фотоаппарата.

Такая система стабилизации не влияет на светосилу объектива или стоимость оптики, стабилизатор один и находится в корпусе фотоаппарата, потребляет меньше энергии, чем системы фокусировки встроенные в объектив.

Источник: Фотокомок.ру – тесты и обзоры фотоаппаратов (при цитировании или копировании активная ссылка обязательна)

www.fotokomok.ru

Для чего нужен стабилизатор изображения

Процент резких изображений в зависимости от выдержки

Введение

Я пользуюсь техникой компаний Canon и Nikon. Их стабилизаторы имеют названия IS и VR. IS (Image Stabilization) это аббревиатура компании Canon, VR (Vibration Reduction) – Nikon. Стабилизатор изображения помогает мне получить гораздо более четкое изображение с длиннофокусными объективами, а также при низком уровне освещения.

IS и VR настолько важны для получения отличных снимков, что я не буду покупать объектив без них, если есть выбор.

Как я покажу далее, даже компактные фотоаппараты типа «навел и снял» с IS снимают гораздо резче, чем дорогие зеркалки с объективом без стабилизатора при некоторых условиях.

VR против IS

VR (Nikon) и  IS (Canon) это одно и то же. Я буду использовать оба термина как синонимы.  Каждый производитель использует свои собственные сокращения.

Обе эти системы стабилизируют изображение, чтобы избежать смаза от дрожания рук. Это помогает во многих случаях обойтись без штатива и получить резкие фотографии. VR и IS позволяют мне снимать при плохом освещении без использования штатива, за исключением совсем уж темного времени суток ( сумерки или ночь).

VR и IS превосходно работают при съемке неподвижных объектов, я как раз снимаю большинство таких кадров. Конечно, для съемки движущихся объектов, спорта или детей системы стабилизации бесполезны.

Некоторые люди хотели бы использовать VR и IS для съемки с проводкой, в этом случае стабилизатор работает в одном направлении, в то время как в других снимок получается размытым.

Чтобы получить резкий кадр быстро движущегося объекта, вам придется все равно использовать либо светосильный объектив, либо больше света, либо поднять ISO.

Стабилизатор помогает только компенсировать дрожание камеры, но не может ничего сделать с движущимися объектами.

Другие производители

Minolta, Panasonic, Olympus и Sony

Minolta (теперь Sony) выпускает зеркальные камеры, в которых стабилизатор изображения уже встроен в фотоаппарат. Я не пробовал эти системы. Преимуществом их, как утверждает производитель, является то, что они работают с любыми объективами, так как стабилизатор находится в камере, а не в объективе.

Anti – Shake

Остерегайтесь подобных названий. Большинство производителей, использующих этот термин, обманывают потребителя и просто повышают ISO, чтобы получить более короткую выдержку. Вы и сами можете увеличить ISO. Обычно такие камеры не компенсируют дрожание рук, как это делает система VR и IS.

Как работают стабилизаторы

Я пропущу подробности, основной принцип в том, что датчики движения предугадывают его направление и скорость в начальной фазе, когда фотограф нажимает кнопку затвора и делает кадр.

Затем они используют различные устройства сдвига линз или матрицы в противофазе с детектируемым сигналом ошибки, чтобы противодействовать этому движению.

За счет этого происходит стабилизация изображения при экспонировании.

Вы можете увидеть работу стабилизатора через видоискатель зеркальных фотоаппаратов или на экранчике компактных, нажав до половины кнопку спуска затвора.

График и действительность

Дрожание рук, которое врачи называют тремором, имеет случайный характер.

Сделайте достаточное количество фотографий в любых условиях. Некоторые будут резче, некоторые более размытыми. Процент попаданий зависит от условий, выдержки, фокусного расстояния.

На графике показано, как процент ваших резких снимков зависит от выдержки. На очень длинных выдержках, например, 30 секунд, почти никогда не получите резкий  кадр, независимо от наличия стабилизатора. Но вероятность этого не равна нулю, так как есть счастливый случай.

На коротких выдержках, таких как 1/1000, вы получите резкие снимки почти в 100% случаев, опять же независимо от наличия стабилизатора. Но почти 100% это не чистые 100%. Бывают и исключения из правил.

Это все сводится к методам теории вероятности и статистического анализа. Математики смогут это лучше объяснить.

Сказки старых бабок о том, что выдержка должна быть не длиннее 1/30 или 1/(фокусное расстояние) происходят из наблюдения, что большинство людей получают около 50% резких снимков при этих условиях. Это как раз соответствует среднему участку черной кривой на графике. Будучи случайной функцией, более короткая выдержка дает более высокий процент резких снимков, и наоборот.

Трюк

Так как съемка это игра, то я стараюсь увеличить свои шансы на успех с помощью серийной съемки. Я увеличиваю значение выдержки и делаю несколько кадров подряд в этом режиме. Позже я выбираю самые резкие. Чем длиннее выдержка, тем большую длину серии нужно сделать. Чтобы получить хоть один резкий снимок. Например, если вероятность получить резкий снимок 10%, то я делаю 10 или 20 снимков серией и выбираю лучший. Это работает!

Точно также мы можем получить и смазанный кадр с нормальным объективом при выдержке 1/250 секунды. Но это не должно случаться часто, в противном случае подучитесь обращению с камерой.

Стабилизатор в этом случае всегда увеличивает шансы на успех. Я не знаю случаев, чтобы это было не так.

Когда стабилизатор эффективен?

VR и IS дают значительное улучшение в том месте, где кривые графика идут раздельно. Попробуйте снимать с выдержкой около 1/2 – 1/15 с нормальным объективом и вы увидите разницу, как между ночью и днем. С более короткими выдержками снимки и так будут резкими, с более длинными – и стабилизатор уже не поможет.

Примеры

Изображение комнаты, где сделаны кадры

Я делал снимки фотоаппаратом Nikon D200 c объективом 18-135 без стабилизатора и фотоаппаратом Nikon D70 с объективом 18-200 mm VR. Я покажу фото с D70 в масштабе 100%, а с D200 немного меньше, чтобы они совпали.

Наведите курсор, чтобы увидеть разницу

Теперь вы понимаете , почему я считаю, что лучше купить дешевле сам фотоаппарат (тушку), а объектив купить подороже? Помните, что объективы могут служить долгие годы, а тушки меняются чуть не каждый год. Более дешевый D70 с объективом 18-200 с системой VR снимает гораздо лучше на более длинных выдержках, чем гораздо более дорогой D200 без объектива с VR.

Конечно, они сравнивались при фокусном расстоянии 28 мм и выдержке 1/4 секунды, где стабилизатор имеет большое значение. При более коротких выдержках разница не будет столь существенной, но она проявится на больших фокусных расстояниях, даже в солнечный день.

Наведите курсор на изображение, чтобы сравнить снимок, сделанный на D200 без объектива VR и компактный фотоаппарат Canon SD700 с системой IS.

Стабилизатор изображения является ключом к получению резких снимков в типичных условиях освещения в помещении. Даже маленькая карманная камера со стабилизатором может с легкостью победить зеркалку, если используется объектив без стабилизатора, при условии съемки с недостаточным освещением без штатива.

Для каждой из картинок я сделал по шесть снимков. Со стабилизатором пять или шесть были резкими. Без стабилизатора пять или шесть получались смазанными. Я сделал достаточно много снимков, чтобы выборку можно было назвать репрезентативной.

Извините, что размер снимков и экспозиция совпадают не полностью, так как я снимал разными типами фотоаппаратов. Как ни странно, снимки с карманной камеры выглядят более резкими, видимо, это связано с тем, что при внутрикамерной обработке используется более сильное повышение резкости по сравнению с зеркалкой.

Штативы

Я обычно выключаю стабилизатор на штативе, так как он не нужен. Но если даже и забуду, то не вижу в этом проблемы.

Многие системы стабилизации достаточно умны, чтобы определить, что фотоаппарат находится на штативе и отключиться. Но если вы снимаете при сильном ветре или штатив не очень устойчив, стабилизатор вам также поможет.

Съемка на длинной выдержке

Если вы снимаете с рук с длинной выдержкой, порядка нескольких секунд, стабилизатор, как правило, несколько улучшит результат.

Диапазоны частот

Вибрация имеет амплитуду и частоту. Системы стабилизации способны обрабатывать колебания только в определенной полосе частот.

Интересующий нас диапазон лежит в пределах от 0,3 Гц до 30 Гц.

VR и IS игнорируют очень низкие частоты, так как иначе их работа будет создавать трудности при съемке с проводкой или слежением.

Частоты выше 30 Гц также не являются особо важными. Наши мышцы не сокращаются быстрее 30 раз в секунду, а внешние высокочастотные вибрации фильтруются массой нашего тела и массой камеры.

Никогда не ставьте камеру на нечто,  что вибрирует с высокой частотой. Держите ее в руках, чтобы вибрации гасило ваше тело.

Выше определенного диапазона амплитуды (силы вибрации), механика системы стабилизации уже не может скомпенсировать ее, чтобы противодействовать большому смещению, например, если вы снимаете с машины, которая едет по бездорожью.

Активный или нормальный режим (Nikon)

Если у вас на объективе есть переключатель этих параметров, то он оптимизирует систему для различных частот и амплитуд

Активный режим подходит для больших амплитуд смещения, которые игнорируются в обычном режиме, полагая что вы делаете проводку.

Я никогда не видел различия в их производительности, как правило, снимаю в нормальном режиме. Полагаю, что если я снимаю что-то движущееся, система VR не справится так или иначе. Иногда я пользуюсь активным режимом, но не часто.

Самолет

Системы стабилизации предназначены для компенсации тремора рук, а не съемки из движущихся автомобилей или вертолетов. Это гораздо более сильные вибрации, которые требуют внешних стабилизаторов типа гироскопов.

При съемке с самолета никогда не опирайте камеру на дверь или любую другую часть самолета. Вместо этого держите камеру в руках и сидите прямо, отодвинув плечи от сиденья, таким образом, ваше тело поглотит максимальное количество вибраций.

Как всегда, приходится действовать методом проб и ошибок. Когда я снимал из открытых иллюминаторов небольшого самолета, система VR Nikon не смогла с этим справиться, что, в общем-то, логично, так как она не предназначена для этого.

Очень короткая выдержка

VR и IS очень хорошо работают и при коротких выдержках, особенно с длиннофокусными объективами, где можно ощутить разницу.

Благодаря современной цифровой технике мы можем сразу оценить результат, что было невозможно при съемке на пленку. Если изображение даже немного размыто, это легко увидеть на экране камеры.

Таким образом, снимки даже при выдержке 1/1000 секунды с 300-мм объективами могут стать лучше при использовании стабилизатора. Я использую его все время.

Хотя система стабилизации не реагирует на высокие частоты вибрации, эти вибрации никогда не были проблемой для короткой выдержки.

Проблема при съемке с короткой выдержкой та же самая – вибрация с частотой 0,3 Гц – 30 Гц. Короткая выдержка уменьшает влияние вибрации, поэтому VR не так эффективна при короткой выдержке, однако, с длиннофокусными объективами, которые очень чувствительны к вибрациям, VR и IS весьма полезны.

С короткофокусными объективами на коротких выдержках, как правило, вибрация не является проблемой, однако,  стабилизатор может улучшить положение вещей и здесь, насколько это возможно.

Хотя вибрации высокой частоты не являются проблемой, они могут порождать субгармоники, попадающие в диапазон 0,3 Гц – 30 Гц, которые усиливаются длиннофокусными объективами. Как раз с такими вибрациями эффективно справляется система стабилизации.

Отказы

VR и IS системы могут иногда выйти из строя и работать с ошибками. Если это случилось, отключите их, пока не появится возможность сдать объектив в ремонт.

Мой первый Canon 28-135mm IS имел интересный дефект стабилизатора. Он хорошо работал на длинных выдержках, но при дневном свете и коротких выдержках снимки получались хуже!

Я отослал его к Canon по гарантии, и Canon быстро заменил систему, в результате чего объектив стал работать без сбоев.

Вот почему я всегда проверяю вновь купленные объективы. Снимаю со стабилизацией и без нее, при разных выдержках и фокусных расстояниях, чтобы узнать, где я получу наилучшие результаты. Таким образом вы сможете даже поймать редкий заводской дефект.

Рекомендации

Использование IS и VR имеет большое значение для получения резкого изображения примерно до 1/60 секунды с нормальными объективами и, приблизительно до 1/500 секунды с телеобъективами.

При выдержке более чем в несколько секунд эффективность стабилизации уменьшается, но все же это лучше, чем ничего, если у вас нет штатива или невозможно поставить камеру на что-то твердое.

Стабилизатор может помочь даже при очень коротких выдержках с длиннофокусными объективами

Мои лучшие снимки сделаны на открытом воздухе в сумерках. Поэтому я люблю VR и IS

Я всегда держу систему стабилизации включенной, за исключением того, когда аппарат стоит на очень крепком штативе. Также я использую стабилизатор при съемке с моноподов.

Автор: Ken Rockwell

photo-monster.ru

Стабилизация картинки

Аппаратная стабилизация изображения.

Стабилизация изображения — это технология используемая для предотвращения смазывания кадра при больших выдержках, применяется в фото и видео аппаратах. Она механически компенсирует угловые движения самой камеры. Система стабилизации является некой заменой штативу.

Различают несколько видов стабилизации изображения:

  • Оптическая стабилизация изображения
  • Стабилизация с помощью перемещения матрицы
  • Электронная стабилизация изображения
Оптическая стабилизация изображения

Сама схема оптического стабилизатора сделана из специальных линз, которые корректируют линию светового потока внутри самого объектива, так же в этих схемах присутствуют электромагнитные приводы, управляющие отклонениями линз.  Самый трудный момент в этой системе стабилизации — это  точная синхронизация колебания рук человека и уровня отклонения самих корректирующих линз. Для её реализации используют гироскопические сенсоры движения. Они улавливают мельчайшие отклонения аппарата. Но эта система может быть отключена на объективе или в самом меню камеры, если вам нужны смазанные кадры. Оптическая стабилизация способствует увеличению выдержки  4-8 раз.

Касаясь недостатков, оптические стабилизаторы, а точнее камеры и объективы имеющие таковые,  расходуют много энергии, медленный автофокус, тяжелые и громоздкие объективы, а кадры сделанные с такой системой немного теряют в светосиле и резкости.

Стабилизация с помощью перемещения матрицы

По сути разницы между оптическим стабилизатором нет. Одно дело двигать линзы относительно матрицы или двигать матрицу относительно линз. Принцип работы этой системы похож на оптическую стабилизацию. Так же регистрируется колебания рук, процессор передает сигнал на  механизм матрицы и она сдвигается. Данная система может использоваться только в цифровой технике, ибо двигать пленку не получится.

Хоть этот способ похож на оптический, но он менее эффективен, например, на больших фокусных расстояниях, матрица просто на просто не успевает перемещаться.

Электронная стабилизация изображения

В такой системе датчики фиксируют дрожание рук и смещают изображение в пределах матрицы. Для функционирования системы нужно уменьшение полезной площади матрицы (будет кроп), отсюда следует, что уменьшится и сам кадр. На данный момент труЪ-электронная стабилизация функционирует только в некоторых дорогих устройствах. Что касается рекламы, то на рынке данной системы электронной стабилизации, те которые в мыльницах, — просто маркетинговый ход, незначительно влияющий на получаемые кадры.


Смотрите также:

Похожие статьи:

Не пропустите:



У Вас недостаточно прав для добавления комментариев.
Регистрируемся,а потом можно будет писать.

nix-studio-edition.ru

Стабилизация изображения Википедия

Снимки без и с системой стабилизации

Стабилизация изображения — это технология, применяемая в фото- и видеосъёмочной технике, механически компенсирующая собственные угловые движения камеры для предотвращения смазывания изображения при больших выдержках («шевелёнки»).

Система стабилизации не рассчитана на компенсацию движения объекта съёмки и, по сути дела, служит заменой штативу в некотором диапазоне условий съёмки.

Возможности систем стабилизации изображения ограничены. По самым оптимистическим данным, выигрыш в величине допустимой выдержки составляет 8—16 раз (3—4 ступени экспозиции)[1][2][3].

Тем не менее, в целом ряде случаев автоматическая стабилизация бывает крайне полезна, позволяя увеличить выдержку на эти самые 3—4 ступени и спокойно снимать с рук в таких условиях освещения и на таких фокусных расстояниях объектива, когда без стабилизатора понадобился бы фотоштатив. Кроме того, иногда стабилизация позволяет избежать «принудительного» увеличения чувствительности матрицы, приводящего к росту уровня шумов.

Цифровая стабилизация изображения — технология обработки изображения в видеосъёмочной аппаратуре, позволяющая (помимо компенсации движения камеры) полностью или частично компенсировать движение одного из объектов в кадре и улучшить качество изображения благодаря меньшей смазанности сюжетно важных деталей.

Стабилизатор изображения — общее наименование всех частей камеры, осуществляющих стабилизацию изображения.

Технологии нашли применение в фотографии, видеосъёмке, в конструкции астрономических телескопов, биноклей. Наибольшее значение стабилизация имеет в случае опасности смещения камеры при съёмке, при большой выдержке и значительном фокусном расстоянии объектива. В видеокамерах движение камеры вызывает видимое колебание кадра к кадру. В астрономии толчки аппаратуры вызывают колебания линз, которые вызывают проблемы с регистрацией положения объектов в связи со смещениями изображений от номинального положения на фокальной плоскости.

«Шевелёнка» и «сдёргивание кадра»[ | ]

Работа системы стабилизации[ | ]

Стабилизаторы изображения бывают оптическими, с подвижной матрицей и электронными (цифровыми).

Датчик стабилизатора изображения[ | ]

В фотоаппарат встроены специальные сенсоры, работающие по принципу гироскопов или акселерометров. Эти сенсоры постоянно определяют углы поворота и скорости перемещения фотоаппарата в пространстве и выдают команды электрическим приводам, которые отклоняют стабилизирующий элемент объектива или матрицу.

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *